Эрнест резерфорд биография. Резерфорд Эрнест: биография, открытия и интересные факты

Эрнест Резерфорд (1871-1937) - английский физик, один из создателей учения о радиоактивности и строении атома, основатель научной школы, иностранный член-корреспондент РАН (1922) и почетный член АН СССР (1925). Директор Кавендишской лаборатории (с 1919). Открыл (1899) альфа-лучи, бета-лучи и установил их природу. Создал (1903, совместно с Фредериком Содди) теорию радиоактивности. Предложил (1911) планетарную модель атома. Осуществил (1919) первую искусственную ядерную реакцию. Предсказал (1921) существование нейтрона. Нобелевская премия (1908).

Эрнест Резерфорд родился 30 августа 1871 года, в Спринг Гроуве, близ Брайтуотера, Южный остров, Новая Зеландия. Уроженец Новой Зеландии, основоположник ядерной физики, автор планетарной модели атома, член (в 1925-30 президент) Лондонского Королевского общества, член всех академий наук мира, в том числе (с 1925) иностранный член АН СССР, лауреат Нобелевской премии по химии (1908), создатель большой научной школы.

Детство

Резерфорд Эрнест

Эрнест родился в семье колесного мастера Джеймса Резерфорда и его жены учительницы Марты Томпсон. Кроме Эрнеста в семье было еще 6 сыновей и 5 дочерей. До 1889 года, когда семья переселилась в Пунгареху (Северный остров), Эрнест поступил в Кентерберийский колледж Новозеландского университета (город Крайстчерч, Южный остров); до этого он успел поучиться в Фоксхилле и в Хэйвлокке, в Нельсоновском колледже для мальчиков.

Блестящие способности Эрнеста Резерфорда обнаружились уже в годы учебы. После окончания IV курса он удостаивается награды за лучшую работу по математике и занимает первое место на магистерских экзаменах, причем не только по математике, но и по физике. Но, став магистром искусств, он не покинул колледжа. Резерфорд погрузился в свою первую самостоятельную научную работу. Она имела название: «Магнетизация железа при высокочастотных разрядах». Был придуман и изготовлен прибор - магнитный детектор, один из первых приемников электромагнитных волн, который стал его «входным билетом» в мир большой науки. И вскоре в его жизни произошла важнейшая перемена.

Наиболее одаренным молодым заморским подданным британской короны один раз в два года предоставлялась особая Стипендия имени Всемирной выставки 1851, дававшая возможность поехать для усовершенствования в науках в Англию. В 1895 году было решено, что ее достойны двое новозеландцев - химик Маклорен и физик Резерфорд. Но место было одно, и надежды Резерфорда рухнули. Но семейные обстоятельства заставили Маклорена отказаться от поездки, и осенью 1895 года Эрнест Резерфорд прибывает в Англию, в Кавендишевскую лабораторию Кембриджского университета и становится первым докторантом ее директора Джозефа Джона Томсона.

В Кавендишевской лаборатории

молодой физик: Я работаю с утра до вечера.
Резерфорд: А когда же вы думаете?

Резерфорд Эрнест

Джозеф Джон Томсон был уже к тому времени известным ученым, членом Лондонского королевского общества. Он быстро оценил выдающиеся способности Резерфорда и привлек его к своей работе по изучению процессов ионизации газов под действием рентгеновских лучей. Но уже летом 1898 Резерфорд делает первые шаги в исследовании и других лучей - лучей Беккереля. Открытое этим французским физиком излучение урановой соли позже получило название радиоактивного. Его изучением активно занимался сам А. А. Беккерель и супруги Кюри - Пьер и Мария. В это исследование в 1898 активно включился Э. Резерфорд. Именно он обнаружил, что в лучи Беккереля входят потоки положительно заряженных ядер гелия (альфа-частиц) и потоки бета-частиц - электронов. (При бета-распаде некоторых элементов испускаются позитроны, а не электроны; позитроны имеют такую же массу, как электроны, но положительный электрический заряд). Через два года, в 1900 французский физик Виллар (1860-1934) открыл, что испускаются еще и не несущие электрического заряда гамма-лучи - электромагнитное излучение, более коротковолновое, чем рентгеновское.

18 июля 1898 года в Парижскую академию наук была представлена работа Пьера Кюри и Марии Кюри-Склодовской, вызвавшая исключительный интерес Резерфорда. В этой работе авторы указывали, что кроме урана, существуют и другие радиоактивные (этот термин был употреблен впервые) элементы. Позже именно Резерфорд ввел понятие об одном из основных отличительных признаков таких элементов - периоде полураспада.

В декабре 1897 года Резерфорду продлили выставочную стипендию, и он получил возможность продолжить исследования лучей урана. Но в апреле 1898 года освободилось место профессора Мак-Гиллского университета в Монреале, и Резерфорд решил переехать в Канаду. Пора ученичества прошла. Всем, и, в первую очередь, ему самому было ясно, что он уже готов к самостоятельной работе.

Девять лет в Канаде

Счастливец Резерфорд, вы всегда на волне!
- Это правда, но разве не я создаю волну?

Резерфорд Эрнест

Переезд в Канаду совершился осенью 1898 года. Преподавание Эрнеста Резерфорда на первых порах шло не слишком успешно: студентам не понравились лекции, которые молодой и еще не вполне научившийся чувствовать аудиторию профессор, перенасыщал деталями. Некоторые затруднения возникли вначале и в научной работе из-за того, что задерживалось прибытие заказанных радиоактивных препаратов. Но все шероховатости быстро сгладились, и началась полоса успехов и удач. Впрочем, говорить об удачах вряд ли уместно: все достигалось трудом. И в этот труд вовлекались новые единомышленники и друзья.

Вокруг Резерфорда и тогда, и в более поздние годы всегда быстро формировалась атмосфера увлеченности и творческого энтузиазма. Труд был напряженным и радостным, и он приводил к важным открытиям. В 1899 Эрнест Резерфорд открывает эманацию тория, а в 1902-03 одах он совместно с Ф. Содди уже приходит к общему закону радиоактивных превращений. Об этом научном событии нужно сказать подробнее.

Все химики мира твердо усвоили, что превращение одних химических элементов в другие невозможно, что мечты алхимиков делать золото из свинца следует похоронить навеки. И вот появляется работа, авторы которой утверждают, что превращения элементов при радиоактивных распадах не только происходят, но и что даже ни прекратить, ни замедлить их невозможно. Более того, формулируются законы таких превращений. Мы теперь понимаем, что положение элемента в периодической системе Дмитрия Менделеева, а, значит, и его химические свойства, определяются зарядом ядра. При альфа-распаде, когда заряд ядра уменьшается на две единицы (за единицу принимается «элементарный» заряд - модуль заряда электрона), элемент «перемещается» на две клеточки вверх в таблице Менделеева, при электронном бета-распаде - на одну клеточку вниз, при позитронном - на клеточку вверх. Несмотря на кажущуюся простоту и даже очевидность этого закона, его открытие стало одним из важнейших научных событий начала нашего века.

Это время знаменательно и важным событием в личной жизни Резерфорда: через 5 лет после помолвки состоялась его свадьба с Мэри Джорджине Ньютон, дочерью хозяйки того пансиона в Крайстчерче, в котором он некогда жил. З0 марта 1901 родилась единственная дочь четы Резерфордов. По времени это почти совпало с рождением новой главы в физической науке - физики ядра. Важным и радостным событием явилось и избрание Резерфорда в 1903 членом Лондонского королевского общества.

Планетарная модель атома

Если учёный не может объяснить уборщице, которая убирается у него в лаборатории, смысл своей работы, то он сам не понимает, что он делает.

Резерфорд Эрнест

Итоги научных поисков и открытий Резерфорда составили содержание двух его книг. Первая из них называлась «Радиоактивность» и вышла в 1904. Через год вышла вторая - «Радиоактивные превращения». А их автор уже начинал новые исследования. Он уже понял, что радиоактивное излучение исходит из атомов, но место его возникновения оставалось абсолютно неясным. Нужно было исследовать устройство атома. И здесь Эрнест Резерфорд обратился к методике, с которой он начинал работу у Дж. Дж. Томсона - к просвечиванию альфа-частицами. В опытах исследовалось, как поток таких частиц проходит через листочки тонкой фольги.

Первая модель атома была предложена, когда стало известно, что электроны имеют отрицательный электрический заряд. Но они входят в атомы, которые в целом электронейтральны; что же является носителем положительного заряда? Дж. Дж.Томсон предложил для решения этой проблемы такую модель: атом - нечто вроде положительно заряженной капли радиусом в стомиллионную долю (10) сантиметра, внутри которой находятся крохотные отрицательно заряженные электроны. Под действием кулоновских сил они стремятся занять положение в центре атома, но если что-то выведет их из этого положения равновесия, они начинают совершать колебания, что сопровождается излучением (таким образом, модель объясняла и известный тогда факт существования спектров излучения). Из опытов уже было известно, что расстояния между атомами в твердых телах примерно такие же, как и размеры атомов. Поэтому казалось очевидным, что альфа-частицы почти не могут пролететь даже сквозь тонкую фольгу, подобно тому, как камень не пролетит сквозь лес, деревья в котором растут почти вплотную друг к другу. Но первые же опыты Резерфорда убеждали, что это не так. Подавляющее большинство альфа-частиц пронизывало фольгу, даже почти не отклоняясь, и лишь у некоторых это отклонение наблюдалось, порой даже весьма значительное.

И здесь вновь проявилась исключительная интуиция Эрнеста Резерфорда и его умение понимать язык природы. Он решительно отказывается от модели Томсона и выдвигает принципиально новую модель. Она получила название планетарной: в центре атома, подобно Солнцу в Солнечной системе - ядро, в котором, несмотря на его относительно малые размеры, сосредоточена вся масса атома. А вокруг него, подобно планетам, двигающимся вокруг Солнца, вращаются электроны. Их массы значительно меньше, чем у альфа-частиц, которые поэтому почти не откланяются, пронизывая электронные облака. И только когда альфа-частица пролетает близко от положительно заряженного ядра, кулоновская сила отталкивания может резко искривить ее траекторию.

Формула, которую вывел Резерфорд, опираясь на эту модель, прекрасно согласовалась с данными эксперимента. В 1903 году идею планетарной модели атома доложил в Токийском физико-математическом обществе японский теоретик Хантаро Нагаока, назвавшей эту модель «сатурноподобной», но его работа (о которой Резерфорд не знал) не получила дальнейшего развития.

Но планетарная модель не согласовывалась с законами электродинамики! Эти законы, установленные, в основном, трудами Майкла Фарадея и Джеймса Максвелла, утверждают, что ускоренно движущийся заряд излучает электромагнитные волны и поэтому теряет энергию. Электрон в атоме Э.Резерфорда движется ускоренно в кулоновском поле ядра и, как показывает теория Максвелла, должен был бы, потеряв примерно за десятимиллионную долю секунды всю энергию, упасть на ядро. Это называется проблемой радиационной неустойчивости резерфордовской модели атома, и Эрнест Резерфорд ее отчетливо понимал, когда в 1907 пришло время его возвращения в Англию.

Возвращение в Англию

Теперь вы видите, что ничего не видно. А почему ничего не видно, вы сейчас увидите.

Резерфорд Эрнест

Труды Резерфорда в Мак-Гилльском университете принесли ему такую известность, что его стали наперебой приглашать на работу в научные центры различных стран. Весной 1907 года он принял решение оставить Канаду и прибыл в университет Виктории в Манчестере. Работы тут же были продолжены. Уже в 1908 вместе с Хансом Гейгером Резерфорд создает новый замечательный прибор - счетчик альфа-частиц, что сыграло важную роль для выяснения того, что они представляют собой дважды ионизованные атомы гелия. В 1908 Резерфорду была присуждена Нобелевская премия (но не по физике, а по химии).

Планетарная модель атома тем временем все больше занимала его мысли. И вот в марте 1912 года начинается дружба и сотрудничество Резерфорда с датским физиком Нильсом Бором. Бор - и это явилось его величайшей научной заслугой - внес в планетарную модель Резерфорда принципиально новые черты - идею квантов. Эта идея возникла еще в начале века благодаря работам великого Макса Планка, понявшего, что для объяснения законов теплового излучения нужно допустить, что энергия уносится дискретными порциями - квантами. Идея дискретности была органически чужда всей классической физике, в частности, теории электромагнитных волн, но вскоре Альберт Эйнштейн, а затем и Артур Комптон показали, что эта квантовость проявляется и при поглощении, и при рассеянии.

Нильс Бор выдвинул «постулаты», которые на первый взгляд выглядели внутренне противоречивыми: в атоме существуют такие орбиты, двигаясь по которым электрон, вопреки законам классической электродинамики, не излучает, хотя и имеет ускорение; Бор указал правило нахождения таких стационарных орбит; кванты излучения появляются (или поглощаются) только при переходе электрона с одной орбиты на другую, в соответствии с законом сохранения энергии. Атом Бора - Резерфорда, как его по праву начали называть, не только принес решение многих проблем, он ознаменовал прорыв в мир новых идей, что вскоре привело к радикальному пересмотру многих представлений о материи и ее движении. Работу Нильса Бора «О структуре атомов и молекул» направил в печать Резерфорд.

Алхимия 20 века

И в это время, и позже, когда Эрнест Резерфорд в 1919 году принимает пост профессора Кембриджского университета и директора Кавендишевской лаборатории, он становится центром притяжения для физиков всего мира. Его справедливо считали своим учителем десятки ученых, в том числе, и удостоенные впоследствии Нобелевских премий: Генри Мозли, Джеймс Чедвик, Джон Дуглас Кокрофт, М. Олифант, В. Гейтлер, Отто Ган, Петр Леонидович Капица, Юлий Борисович Харитон, Георгий Антонович Гамов.

Три стадии признания научной истины: первая - «это абсурд», вторая - «в этом что-то есть», третья - «это общеизвестно»

Резерфорд Эрнест

Все обильнее становился поток наград и почестей. В 1914 Резерфор дполучает дворянство, в 1923 становится Президентом Британской ассоциации, с 1925 по 1930 - президент Королевского общества, в 1931 он получает титул барона и становится лордом Резерфордом оф Нельсон. Но, несмотря на все возрастающие нагрузки, в том числе - и не только научные, Резерфорд продолжает таранные атаки на тайны атома и ядра. Он уже приступил к экспериментам, завершившимся открытием искусственного превращения химических элементов и искусственного расщепления атомных ядер, предсказал в 1920 существование нейтрона и дейтрона, в 1933 был инициатором и непосредственным участником экспериментальной проверки взаимосвязи массы и энергии в ядерных процессах. В апреле 1932 Эрнест Резерфорд активно поддержал идею использования ускорителей протонов при изучении ядерных реакций. Его можно причислить и к числу основоположников ядерной энергетики.

Труды Эрнеста Резерфорда, которого нередко справедливо называют одним из титанов физики нашего века, работы нескольких поколений его учеников оказали огромное влияние не только на науку и технику нашего вера, но и на жизнь миллионов людей. Конечно, Резерфорд, особенно в конце жизни не мог не задумываться, останется ли это влияние благотворным. Но он был оптимистом, верил в людей и в науку, которой посвятил всю жизнь.

Эрнест Резерфорд скончался 19 октября 1937, в Кембридже и похоронен в Вестминстерском аббатстве

Эрнест Резерфорд - цитаты

Все науки делятся на физику и коллекционирование марок.

молодой физик: Я работаю с утра до вечера. Резерфорд: А когда же вы думаете?

Счастливец Резерфорд, вы всегда на волне! - Это правда, но разве не я создаю волну?

Если учёный не может объяснить уборщице, которая убирается у него в лаборатории, смысл своей работы, то он сам не понимает, что он делает.

Теперь вы видите, что ничего не видно. А почему ничего не видно, вы сейчас увидите. - из лекции с демонстрацией распада радия

Английский физик, один из создателей учения о радиоактивности и строении атома, основатель научной школы, ин. ч.-к. РАН (1922), поч.ч. АН СССР (1925). Дир. Кавендишской лаборатории (с 1919). Открыл (1899) альфа- и бета-лучи и установил их природу. Создал (1903, совм. с Ф. Содди) теорию радиоактивности. Предложил (1911) планетарную модель атома. Осуществил (1919) первую исскуств. ядерную реакцию. Предсказал (1921) существование нейтрона. Ноб. пр. по химии (1908).


Эрнест Резерфорд считается величайшим физиком-экспериментатором двадцатого столетия. Он является центральной фигурой в наших познаниях в области радиоактивности, а также человеком, который положил начало ядерной физике. Помимо своего огромного теоретического значения его открытия получили широкий спектр применения, включая: ядерное оружие, атомные электростанции, радиоактивные исчисления и исследования радиации. Влияние трудов Резерфорда на мир огромно. Оно продолжает расти и, похоже, еще увеличится в будущем.

Резерфорд родился и вырос в Новой Зеландии. Там он поступил в Кентерберийский колледж и к двадцати трем годам получил три степени (бакалавра гуманитарных наук, бакалавра естественных наук, магистра гуманитарных наук). На следующий год ему присудили право на обучение в Кембриждском университете в Англии, где он провел три года как студент-исследователь под руководством Дж. Дж. Томсона, одного из ведущих ученых того времени. В двадцать семь лет Резерфорд стал профессором физики в университете Макджил в Канаде. Там он работал девять лет и в 1907 году вернулся в Англию, чтобы возглавить физический факультет Манчестерского университета. В 1919 году Резерфорд вернулся в Кембридж, на этот раз как директор Кавендишской лаборатории, и оставался на этом посту до конца жизни.

Радиоактивность была открыта в 1896 году французским ученым Антуаном Анри Беккерелем, когда он проводил эксперименты с урановыми соединениями. Но вскоре Беккерель потерял интерес к этому предмету, и большая часть наших основных знаний в области радиоактивности происходит из широких исследований Резерфорда. (Мари и Пьер Кюри открыли еще два радиоактивных элемента - полоний и радий, но не сделали открытий фундаментального значения.)

Одно из первых открытий Резерфорда заключалось в том, что радиоактивное излучение урана состоит из двух различных компонентов, которые ученый назвал альфа- и бета-лучи. Позже он продемонстрировал природу каждого компонента (они состоят из быстродвижущихся частиц) и показал, что существует еще и третий компонент, который назвал гамма-лучами.

Важная черта радиоактивности - это связанная с ней энергия. Беккерель, супруги Кюри и множество других ученых считали энергию внешним источником. Но Резерфорд доказал, что данная энергия - которая намного мощнее, чем освобождаемая при химических реакциях, - исходит изнутри отдельных атомов урана! Этим он положил начало важной концепции атомной энергии.

Ученые всегда предполагали, будто отдельные атомы неделимы и неизменяемы. Но Резерфорд (с помощью очень талантливого молодого помощника Фредерика Содди) смог пока зать, что когда атом испускает альфа- или бета-лучи, он преобразуется в атом иного сорта. Сначала химики не могли в это поверить. Однако Резерфорд и Содди провели целую серию экспериментов с радиоактивным распадом и трансформировали уран в свинец. Также Резерфорд измерил скорость распада и сформулировал важную концепцию "полураспада". Это вскоре привело к технике радиоактивного исчисления, которое стало одним из важнейших научных инструментов и нашло широкое применение в геологии, археологии, астрономии и во многих других областях.

Эта ошеломляющая серия открытий принесла Резерфорду в 1908 году Нобелевскую премию (позже Нобелевскую премию получил и Содди), но его величайшее достижение было еще впереди. Он заметил, что быстродвижущиеся альфа-частицы способны проходить сквозь тонкую золотую фольгу (не оставляя видимых следов!), но при этом слегка отклоняются. Возникло предположение, что атомы золота, твердые, непроницаемые, как "крошечные бильярдные шары" - как ранее считали ученые, - были мягкими внутри! Все выглядело так, будто меньшие и более твердые альфа-частицы могут проходить сквозь атомы золота как высокоскоростная пуля через желе.

Но Резерфорд (работая с Гейгером и Марсденом, своими двумя молодыми помощниками) обнаружил, что некоторые альфа-частицы, проходя сквозь золотую фольгу, отклоняются очень сильно. Фактически некоторые вообще отлетают назад! Почувствовав, что за этим кроется нечто важное, ученый тщательно посчитал количество частиц, полетевших в каждом направлении. Затем путем сложного, но вполне убедительного математического анализа он показал единственный путь, которым можно было объяснить результаты экспериментов: атом золота состоял почти полностью из пустого пространства, а практически вся атомная масса была сконцентрирована в центре, в маленьком "ядре" атома!

Одним ударом труд Резерфорда навсегда потряс наше привычное видение мира. Если даже кусок металла - кажущийся самым твердым из всех предметов - являлся в основном пустым пространством, значит, все, что мы считали вещественным, вдруг развалилось на крошечные песчинки, бегающие в необъятной пустоте!

Открытие Резерфордом атомных ядер является основой всех современных теорий строения атома. Когда Нильс Бор через два года опубликовал знаменитый труд, описывающий атом как миниатюрную солнечную систему, управляемую квантовой механикой, он использовал для своей модели в качестве отправной точки ядерную теорию Резерфорда. Так же поступили Гейзенберг и Шрёдингер, когда они сконструировали более сложные атомные модели, используя классическую и волновую механику.

Открытие Резерфорда также привело к появлению новой ветви науки: изучение атомного ядра. В этой области Резерфорду тоже было суждено стать пионером. В 1919 году он добился успеха при трансформировании ядер азота в ядра кислорода, обстреливая первые быстродвижущимися альфа-частицами. Это было достижение, о котором мечтали древние алхимики.

Вскоре стало ясно, что ядерные трансформации могут быть источником энергии Солнца. Более того, трансформация атомных ядер является ключевым процессом в атомном оружии и на атомных электростанциях. Следовательно, открытие Резерфорда вызывает гораздо больший интерес, чем просто академический.

Личность Резерфорда постоянно поражала всех, кто с ним встречался. Он был крупным человеком с громким голосом, беспредельной энергией и заметным недостатком скромности. Когда коллеги отмечали сверхъестественную способность Резерфорда всегда находиться "на гребне волны" научных исследований, он сразу отвечал: "А почему бы и нет? Ведь это я вызвал волну, не так ли?" Немногие ученые стали бы возражать против этого утверждения.

Которого нередко справедливо называют одним из титанов физики нашего века, работы нескольких поколений его учеников оказали огромное влияние не только на науку и технику нашего века, но и на жизнь миллионов людей. Он был оптимистом, верил в людей и в науку, которой посвятил всю жизнь».

Эрнест Резерфорд родился 30 августа 1871 года вблизи города Нелсон (Новая Зеландия), в семье переселенца из Шотландии колесного мастера Джеймса Резерфорда. Эрнест был четвертым ребенком в семье, кроме него было еще 6 сыновей и 5 дочерей. Мать его, Марта Томпсон, работала сельской учительницей. Когда отец организовал деревообрабатывающее предприятие, мальчик часто работал под его руководством. Полученные навыки впоследствии помогли Эрнесту при конструировании и постройке научной аппаратуры.

Окончив школу в Хавелоке, где в это время жила семья, он получил стипендию для продолжения образования в колледже провинции Нелсон, куда поступил в 1887 году. Через два года Эрнест сдал экзамен в Кентерберийский колледж - филиал Новозеландского университета в Крайстчерче. В колледже на Резерфорда оказали большое влияние его учителя: преподававший физику и химию Э.У. Бикертон и математик Дж.Х.Х. Кук.

Эрнест обнаружил блестящие способности. После окончания четвертого курса он удостоился награды за лучшую работу по математике и занял первое место на магистерских экзаменах, причем не только по математике, но и по физике. Став в 1892 году магистром искусств, он не покинул колледж. Резерфорд погрузился в свою первую самостоятельную научную работу. Она имела название «Магнетизация железа при высокочастотных разрядах» и касалась обнаружения высокочастотных радиоволн. Для того чтобы изучить это явление, он сконструировал радиоприемник (за несколько лет до того, как это сделал Маркони) и с его помощью получал сигналы, передаваемые коллегами с расстояния полумили. Работа молодого ученого была опубликована в 1894 году в «Известиях философского института Новой Зеландии».

Наиболее одаренным молодым заморским подданным британской короны один раз в два года предоставлялась особая стипендия, дававшая возможность поехать для усовершенствования в науках в Англию. В 1895 году оказалась вакантной стипендия для получения научного образования. Первый кандидат на эту стипендию химик Маклорен отказался по семейным обстоятельствам, вторым кандидатом был Резерфорд. Приехав в Англию, Резерфорд получил приглашение Дж.Дж. Томсона работать в Кембридже в лаборатории Кавендиша. Так начался научный путь Резерфорда.

На Томсона произвело глубокое впечатление проведенное Резерфордом исследование радиоволн, и он в 1896 году предложил совместно изучать воздействие рентгеновских лучей на электрические разряды в газах. В том же году появляется совместная работа Томсона и Резерфорда «О прохождении электричества через газы, подвергнутые действию лучей Рентгена». В следующем году вышла в свет заключительная статья Резерфорда по этой тематике «Магнитный детектор электрических волн и некоторые его применения». После этого он полностью сосредоточивает свои силы на исследовании газового разряда. В 1897 году появляется и его новая работа «Об электризации газов, подверженных действию рентгеновских лучей, и о поглощении рентгеновского излучения газами и парами».

Сотрудничество с Томсоном увенчалось весомыми результатами, включая открытие последним электрона - частицы, несущей отрицательный электрический заряд. Опираясь на свои исследования, Томсон и Резерфорд выдвинули предположение, что, когда рентгеновские лучи проходят через газ, они разрушают атомы этого газа, высвобождая одинаковое число положительно и отрицательно заряженных частиц. Эти частицы они назвали ионами. После этой работы Резерфорд занялся изучением атомной структуры вещества.

Осенью 1898 года Резерфорд занял место профессора Макгилльского университета в Монреале. Преподавание Резерфорда на первых порах шло не слишком успешно: студентам не понравились лекции, которые молодой и еще не вполне научившийся чувствовать аудиторию профессор перенасыщал деталями. Некоторые затруднения возникли вначале и в научной работе из-за того, что задерживалось прибытие заказанных радиоактивных препаратов. Ведь при всех усилиях он не получал достаточных средств для постройки необходимых приборов. Много необходимой для опытов аппаратуры Резерфорд построил собственными руками.

Тем не менее он работал в Монреале довольно долго - семь лет. Исключение составил 1900 год, когда во время краткого пребывания в Новой Зеландии Резерфорд женился. Его избранницей стала Мэри Джорджин Ньютон, дочь хозяйки того пансиона в Крайстчерче, в котором он некогда жил. 30 марта 1901 родилась единственная дочь четы Резерфорд. По времени это почти совпало с рождением новой главы в физической науке - физики ядра.

«В 1899 году Резерфорд открывает эманацию тория, а в 1902- 03 годах он совместно с Ф. Содди уже приходит к общему закону радиоактивных превращений,- пишет В.И. Григорьев.- Об этом научном событии нужно сказать подробнее. Все химики мира твердо усвоили, что превращение одних химических элементов в другие невозможно, что мечты алхимиков делать золото из свинца следует похоронить навеки. И вот появляется работа, авторы которой утверждают, что превращения элементов при радиоактивных распадах не только происходят, но и что даже ни прекратить, ни замедлить их невозможно. Более того, формулируются законы таких превращений. Мы теперь понимаем, что положение элемента в периодической системе Менделеева, а значит, и его химические свойства, определяются зарядом ядра. При альфа-распаде, когда заряд ядра уменьшается на две единицы (за единицу принимается «элементарный» заряд - модуль заряда электрона), элемент «перемещается» на две клеточки вверх в таблице Менделеева, при электронном бета-распаде - на одну клеточку вниз, при позитронном - на клеточку вверх. Несмотря на кажущуюся простоту и даже очевидность этого закона, его открытие стало одним из важнейших научных событий начала нашего века».

В своей классической работе «Радиоактивность» Резерфорд и Содди коснулись фундаментального вопроса об энергии радиоактивных превращений. Подсчитывая энергию испускаемых радием альфа-частиц, они приходят к выводу, что «энергия радиоактивных превращений, по крайней мере, в 20000 раз, а может, и в миллион раз превышает энергию любого молекулярного превращения». Резерфорд и Содди сделали вывод, что «энергия, скрытая в атоме, во много раз больше энергии, освобождающейся при обычном химическом превращении». Эта огромная энергия, по их мнению, должна учитываться «при объяснении явлений космической физики». В частности, постоянство солнечной энергии можно объяснить тем, «что на Солнце идут процессы субатомного превращения».

Нельзя не поразиться прозорливости авторов, увидевших еще в 1903 году космическую роль ядерной энергии. Этот год стал годом открытия новой формы энергии, о которой с определенностью высказывались Резерфорд и Содди, назвав ее внутриатомной энергией.

Получивший мировую славу ученый, член Лондонского королевского общества (1903) получает приглашение занять кафедру в Манчестере. 24 мая 1907 года Резерфорд вернулся в Европу. Здесь Резерфорд развернул кипучую деятельность, привлекая молодых ученых из разных стран мира. Одним из его деятельных сотрудников был немецкий физик Ганс Гейгер, создатель первого счетчика элементарных частиц. В Манчестере с Резерфордом работали Э. Марсден, К. Фаянс, Г. Мозли, Г. Хевеши и другие физики и химики.

В 1908 году Резерфорду была присуждена Нобелевская премия по химии «за проведенные им исследования в области распада элементов в химии радиоактивных веществ». В своей вступительной речи от имени Шведской королевской академии наук К.Б. Хассельберг указал на связь между работой, проведенной Резерфордом, и работами Томсона, Анри Беккереля, Пьера и Марии Кюри. «Открытия привели к потрясающему выводу: химический элемент… способен превращаться в другие элементы»,- сказал Хассельберг. В своей нобелевской лекции Резерфорд отметил: «Есть все основания полагать, что альфа-частицы, которые так свободно выбрасываются из большинства радиоактивных веществ, идентичны по массе и составу и должны состоять из ядер атомов гелия. Мы, следовательно, не можем не прийти к заключению, что атомы основных радиоактивных элементов, таких как уран и торий, должны строиться, по крайней мере частично, из атомов гелия».

После получения Нобелевской премии Резерфорд провел эксперименты по бомбардировке пластинки тонкой золотой фольги альфа-частицами. Полученные данные привели его в 1911 году к новой модели атома. Согласно его теории, ставшей общепринятой, положительно заряженные частицы сосредоточены в тяжелом центре атома, а отрицательно заряженные (электроны) находятся на орбите ядра, на довольно большом расстоянии от него. Эта модель подобна крошечной модели Солнечной системы. Она подразумевает, что атомы состоят главным образом из пустого пространства.

Широкое признание теории Резерфорда началось, когда к работе ученого в Манчестерском университете подключился датский физик Нильс Бор. Бор показал, что в терминах, предложенных Резерфордом, структуры могут быть объяснены общеизвестными физическими свойствами атома водорода, а также атомов нескольких более тяжелых элементов.

Плодотворная работа резерфордовской группы в Манчестере была прервана Первой мировой войной. Английское правительство назначило Резерфорда членом «адмиральского штаба изобретений и исследований» - организации, созданной для изыскания средств борьбы с подводными лодками противника. В лаборатории Резерфорда в связи с этим начались исследования по распространению звука под водой. Лишь по окончании войны ученый смог восстановить свои исследования атома.

После войны он вернулся в манчестерскую лабораторию и в 1919 году сделал еще одно фундаментальное открытие. Резерфорду удалось провести искусственным путем первую реакцию превращения атомов. Бомбардируя атомы азота альфа-частицами, Резерфорд получил атомы кислорода. В результате проведенных Резерфордом исследований резко возрос интерес специалистов по атомной физике к природе атомного ядра.

В том же 1919 году Резерфорд перешел в Кембриджский университет, став преемником Томсона в качестве профессора экспериментальной физики и директора Кавендишской лаборатории, а в 1921- м занял должность профессора естественных наук в Королевском институте в Лондоне. В 1925 году ученый был награжден британским орденом «За заслуги». В 1930 году Резерфорд был назначен председателем правительственного консультативного совета управления научных и промышленных исследований. В 1931 году он получил звание лорда и стал членом палаты лордов английского парламента.

Ученики и коллеги вспоминали об ученом как о милом, добром человеке. Они восхищались его необычайным творческим способом мышления, вспоминали, как он с удовольствием говорил перед началом каждого нового исследования: «Надеюсь, что это важная тема, поскольку существует еще так много вещей, которых мы не знаем».

Обеспокоенный политикой, проводимой нацистским правительством Адольфа Гитлера, Резерфорд в 1933 году стал президентом Академического совета помощи, который был создан для оказания содействия тем, кто бежал из Германии.

Почти до конца жизни он отличался крепким здоровьем и умер в Кембридже 20 октября 1937 года после непродолжительной болезни. В признание выдающихся заслуг в развитии науки ученый был похоронен в Вестминстерском аббатстве.

Опыты Резерфорда

В 1913 г. английский физик Резерфорд проделал классические опыты по рассеянию a -частиц тонкими слоями различных веществ. a -частицы, испускаемые радиоактивными веществами, являются подходящими пробными зарядами для исследования внутриатомных электрических полей. Они представляют собой полностью ионизированные атомы гелия, имеют положительный заряд, равный удвоенному элементарному заряду (q = 3.2·10 -19 Кл), массу m = 6.67·10 -27 кг, обладают высокой энергией (а значит и скоростью), достаточной для проникновения в атомы вещества.

Схема опытов Резерфорда и его учеников Гейгера и Марсдена изображена на рис.1.Внутри герметичной камеры, в которой был создан высокий вакуум, находился свинцовый контейнер с радиоактивным элементом, испускавшим a- частицы. Узкий пучок частиц падал перпендикулярно на поверхность металлической (золотой) фольги, толщиной около 1 мкм (10 -6 м). Регистрация частиц производилась по вспышкам света (сцинтилляциям), вызываемыми ими на экране, покрытом люминофором. Экран был укреплен перед объективом на корпусе микроскопа, с помощью которого визуально наблюдали сцинтилляции и подсчитывали их число. Так определяли количество частиц, движущихся по данному направлению после их взаимодействия с атомами вещества. Микроскоп вместе с экраном мог вращаться вокруг вертикальной оси, походящей через центр камеры, для регистрации рассеянных атомами фольги частиц.

На рисунке: 1- атом золота, 2- a -частицы

Более наглядная схема опыта Резерфорда

По рассеянию α-частиц.

K - свинцовый контейнер с радиоактивным веществом,
Э - экран, покрытый сернистым цинком,
Ф - золотая фольга,
M - микроскоп.

Результаты опытов Резерфорда:

1.большинство частиц проходит через атомы вещества. не рассеиваясь (как через "пустоту");
2.с увеличением угла рассеяния число отклонившихся от первоначального направления частиц резко уменьшается;
3.имеются отдельные частицы, отбрасываемые атомами назад, против их первоначального движения (как мяч от стенки).

Резерфорд вывел формулу, по которой можно рассчитать количество a- частиц, рассеянных под определенными углами. В эту формулу входит характеристический параметр "d ", являющийся поперечным размером образований, отклоняющих частицы.
Для совпадения расчетов с результатами опытов это параметр должен быть порядка 10 -13 см. Атомы имеют диаметр 10 -8 см, т.е. на пять порядков выше. Следовательно, в атоме имеется область занимающая ничтожно малую часть атома, которая и отклоняет частицы на большие углы вплоть до 180 0 .

Резерфорд Эрнест – физик, имеющий двойные корни. Его отец новозеландец, а мать англичанка. С детства ему прививали любовь к науке и Англии, куда впоследствии он и переехал.

Причина, по которой все знают это звучное имя – колоссальные изучения в области радиации и распада частиц, которые он проводил на протяжении всей своей жизни.

Эрнест родился и провел детство в Новой Зеландии, там он получил начальное образование, закончил университет и защищал докторскую диссертацию в 1900 году.

Детство. Учеба

30 августа 1871 году в семье фермера Джеймса и англичанки по происхождению, Марты Томпсон появился четвертый ребенок, которого назвали Эрнест. Позже в семье появилось еще восемь детей, воспитание и трудолюбие прививалось с детства.

По окончанию средней школы Эрнест поступает в колледж. На протяжении всего обучения он усердно учился и старался набирать максимальные баллы, чтобы поступить в колледж при новозеландском университете.

После поступления туда он начинает проявлять себя в студенческой и общественной жизни, возглавляет дискуссионный клуб. Окончил колледж будущий физик с двумя степенями – магистра и бакалавра. Магистра в области гуманитаристики и степень бакалавра естественных наук.

С этого времени он начинает интересоваться электротехникой. В 1895 году Эрнест переезжает в Англию и устраивается на работу в Кембриджский университет, где совершает первое открытие – расстояние, определяющее длину электромагнитной волны.

Научная деятельность

Через три года Эрнест переводится в университет МакГила, тут он становится профессором класса физики и начинает изучение радиоактивности. Альфа и бета частицы были открыты этим физиком в 1899 году, после чего начинается еще более углубленное теоретическое и практическое исследование явлений радиоактивности.

Примерно в это же время Резерфорд делает еще одно открытие, изучив и подробно описав, что радиация – это лишь следствие, вытекающее из спонтанного распада атомов. Он описывает, что для уменьшения радиоактивности материала в 2 раза, необходимо определенное время, названное им – «период полураспада».

В 1903 году Эрнест Резерфорд обнаруживает еще не открытый вид электромагнитных волн, который называет «гамма излучение». Через несколько лет его переводят в университет города Манчестер, где он разрабатывает, совместно с коллегами, камеру ионизационную и отражающий экран для последующих своих опытов.

В 1911 году он представил модель атома и предоставил теорию, согласно которой вокруг любого положительно заряженного атома имеются электроны. Через некоторое время в Кавендишской лаборатории он провел опыт по трансмутации, да него такого еще никто не делал, так что в какой-то степени это было открытие. Во время опыта он превратил азот в кислород.

Семья Резерфорда Эрнеста

После переезда в Англию Эрнест знакомится с Марией Георгиной Ньютон и делает ей предложение в 1895 году, а в 1900 году она становится его женой. У пары родился один ребенок, девочка – Эйлин Мария через год после свадьбы.

Смерть Резерфорда Эрнеста

Пупочная грыжа – болезнь, которой страдал известный физик. Операция была проведена позже запланированного времени из-за отсутствия квалифицированного хирурга, и через несколько дней после этого, 19 октября 1937 года знаменитый на весь мир физик скончался.

Вестминстерское аббатство стало последним домом известного физика. Его похоронили тут в аббатстве рядом с другими известными научными деятелями.

Награды физика

Нобелевскую премию Резерфорд Эрнест получает за большой вклад в изучение химии в 1908 году, а именно – опыты проводимые с частицами, их распадом, и радиоактивными веществами, получаемыми из них. В 1914 году его посвятили в рыцари, и он стал именоваться «сэр Эрнст», а еще через два года награждают медалью имени сэра Джеймса Гектора.

Орден Великобритании «За заслуги» физик получает в 1925 году. А спустя шесть лет, в 1931 году, Эрнест удостаивается титула барона Резерфорда Нельсонского и Кембриджского.

  • Когда Эрнест родился, его имя сразу неправильно написали, сделав ошибку, в результате чего вышло Earnest – серьезный.
  • Благодаря открытию Резерфордом «периода полураспада», со временем ученые смогли точнее вычислить возраст Земли.
  • В 1935 году доказав теорию существования нейронов, предложенную Эрнестом Резерфордом, Джеймс Чедвик получил Нобелевскую премию. «Крокодил» - прозвище данное Резерфорду Капицей.
  • Резерерфорд считал, несмотря на собственные открытия, что из атома невозможно получить энергию.
  • В честь физика названы: кратер, химический элемент № 104, лаборатория, открытая в 1957 году, астероид.
  • Резерфорд Э. Избранные научные труды. Строение атома и искусственное превращение элементов. [Djv- 7.6M ] Ответственный редактор Г.Н. Флеров. Составитель и редактор перевода Ю.М. Ципенюк.
    (Москва: Издательство «Наука», 1972. - Серия «Классики науки»)
    Скан: AAW, обработка, формат: mor, 2010
    • СОДЕРЖАНИЕ:
      Предисловие (5).
      1902 г.
      1. Существование тел меньше атомов (7).
      1905 г.
      2. Заряд переносимый α- и β-лучами радия (14).
      3. Некоторые свойства α-лучей, испускаемых радием (28).
      1906 г.
      4. Торможение α-частиц, испускаемых радием при прохождении через вещество (40).
      5. Масса и скорость α-частиц, испускаемых радием и актинием (51).
      1907 г.
      6. Скорость и энергия α-частиц, испускаемых радиоактивными веществами (72).
      7. Некоторые космические аспекты радиоактивности (79).
      8. Образование и происхождение радия (94).
      1908 г.
      9. Спектр эманации радия (109).
      10. Исследование эманации радия. Часть 1 (112).
      11. Электрический метод счета α-частиц, испускаемых радиоактивными веществами (123).
      12. Заряд и природа α-частицы (143).
      13. Химическая природа α-частиц, испускаемых радиоактивными веществами (Нобелевская лекция) (154).
      1909 г.
      14. Природа α-частиц, испускаемых радиоактивными веществами (164).
      15. Атомистическая теория и определение атомных величин (169).
      1911 г.
      16. Исследование эманации радия. Часть II (185).
      17. Образование гелия из радия (192).
      18. Рассеяние α- и β-частиц веществом и строение атома (208).
      1913 г.
      19. Возраст плеохроических гало (225).
      1914 г.
      20. Строение атома (238).
      1919 г.
      21. Столкновение α-частиц с легкими атомами. Часть I (247).
      22. Столкновение α-частиц с легкими атомами. Часть II (268).
      23. Столкновение α-частиц с легкими атомами. Часть III (277).
      24. Столкновение α-частиц с легкими атомами. Часть IV (286).
      1920 г.
      25. Ядерное строение атомов (Бейкерианская лекция) (292).
      1921 г.
      26. Искусственное расщепление легких элементов (317).
      1922 г.
      27. Расщепление элементов α-частицами (332).
      1923 г.
      28. Электрическое строение вещества (346).
      1924 г.
      29. Дальнейшие эксперименты по искусственному разложению элементов (369).
      30. О происхождении и природе длиннопробежных частиц, наблюдаемых с источниками радия C (376).
      1925 г.
      31. Рассеяние α-частиц атомными ядрами и закон силы (391).
      1929 г.
      32. Президентская речь сэра Эрнеста Резерфорда на ежегодном собрании Королевского общества 30 ноября 1928 г. (410).
      1931 г.
      33. Выступление в дискуссии по вопросу о сверхпроникающих лучах (431).
      1933 г.
      3d. Превращение лития под действием протонов и ионов тяжелого изотопа водорода (434).
      1937 г.
      35. Современная алхимия (444).
      36. Сорок лет развития физики (479).
      П.Л. Капица. Научная деятельность Резерфорда (495).
      Мои воспоминания о Резерфорде (502).
      Труды Эрнеста Резерфорда. Библиография. (517).

Аннотация издательства: В настоящую, вторую книгу, избранных научных трудов выдающегося физика XX в. Эрнеста Резерфорда, вошли работы по окончательному выяснению природы a-частиц, а также работы по строению и искусственному превращению элементов. Кроме того, приведены тексты ряда выступлений Резерфорда, носящих обзорный характер.
Издание приурочено к 100-летию со дня рождения Э. Резерфорда, так же как и первая книга: Э. Резерфорд. «Избранные научные труды. Радиоактивность», выпущенная издательством «Наука» в 1971 г.
Почти все вошедшие в издание работы на русском языке публикуются впервые.
Книга рассчитана на специалистов-физиков, преподавателей и всех лиц, интересующихся путями развития и историей науки.