Период полураспада радиоактивных элементов - что это такое и как его определяют? Формула периода полураспада. Основной закон радиоактивного распада

Модели ядра.

В теории ядра используется модельный подход, основанный на аналогии свойств атомных ядер со свойствами, например, жидкой капли, электронной оболочки атома и т.д.: соответственно модели ядер называют капельной, оболочечной и т.д. Каждая из моделей описывает только определенную совокупность свойств ядра и не может дать его полного описания.

Капельная модель (Н.Бор, Я.И. Френкель, 1936) базируется на аналогии в поведении нуклонов в ядре и молекул в капле жидкости. В обоих случаях силы являются короткодействующими и им свойственно насыщение. Капельная модель объяснила механизм ядерных реакций и особенно реакций деления ядер, но не смогла объяснить повышенную устойчивость некоторых ядер.

Согласно оболочечной модели , нуклоны в ядре распределены по дискретным энергетическим уровням (оболочкам), заполняемым нуклонами согласно принципу Паули, а устойчивость ядер связывается с заполнением этих уровней. Считается, что ядра с полностью заполненными оболочками являются наиболее устойчивыми, их называют магическими – это ядра, содержащие 2, 8, 20, 28, 50, 82, 126 протонов или нейтронов. Существуют также и дважды магические ядра , в которых магическим является как число протонов, так и число нейтронов – это , и они являются особенно устойчивыми. Оболочечная модель ядра позволила объяснить спины и магнитные моменты ядер, различную устойчивость атомных ядер и периодичность их свойств.



По мере накопления экспериментальных данных возникли: обобщенная модель ядра (синтез капельной и оболочечной моделей), оптическая модель ядра (объясняет взаимодействие ядер с налетающими частицами) и т.д.

z:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\Fwd_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\Bwd_h.gifРадиоактивность

Почти 90 % из известных 2500 атомных ядер нестабильны. Нестабильное ядро самопроизвольно превращается в другие ядра с испусканием частиц. Это свойство ядер называется радиоактивностью . Таким образом, радиоактивность – это способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием различных видов радиоактивных излучений и элементарных частиц . Явление радиоактивности было открыто в 1896 году французским физиком Анри Беккерелем, который обнаружил, что соли урана испускают неизвестное излучение, способное проникать через непрозрачные для света преграды и вызывать почернение фотоэмульсии. Через два года французские физики Мария и Пьер Кюри обнаружили радиоактивность тория и открыли два новых радиоактивных элемента – полоний и радий .

Различают естественную радиоактивность (наблюдается у неустойчивых изотопов, существующих в природе) и искусственную (наблюдается у изотопов, синтезированных посредством ядерных реакций в лабораторных условиях). Принципиального различия между ними нет.

Радиоактивное излучение бывает трех видов: α -, β - и γ -излучения. α - и β -лучи в магнитном поле испытывают отклонения в противоположные стороны, причем β -лучи отклоняются значительно больше. γ -лучи в магнитном поле вообще не отклоняются (рис.1).

Рисунок 1.

Схема опыта по обнаружению α-, β- и γ-излучений. К – свинцовый контейнер, П – радиоактивный препарат, Ф – фотопластинка, В – магнитное поле.

α -излучение – это поток α-частиц – ядер гелия обладает наименьшей проникающей способностью (0,05мм) и высокой ионизирующей способностью;

β-лучи – это поток электронов, обладают меньшей ионизирующей способностью, но большей проникающей (≈ 2мм);

γ-лучи представляют собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны λ < 10 –10 м является потоком частиц – γ-квантов. Обладают наибольшей проникающей способностью. Они способны проходить через слой свинца толщиной 5–10 см.

Закон радиоактивного распада

Теория радиоактивного распада строится на предположении о том, что радиоактивный распад является спонтанным процессом, подчиняющимся законам статистики. Вероятность распада ядра за единицу времени, равная доле ядер, распадающихся за 1с, называется постоянной радиоактивного распада λ. Число ядер dN распавшихся за очень короткий промежуток времени dt пропорционально полному числу радиоактивных ядер N (нераспавшихся ядер) и промежутку времени dt :

Величину λN называют активностью (скоростью распада) : А = λN = . Единица активности в СИ – беккерель (Бк). До сих пор в ядерной физике применяется и внесистемная единица активности – кюри (Ки): 1Ки = 3,7·10 10 Бк.

Знак «–» указывает, что общее число радиоактивных ядер в процессе распада уменьшается. Разделив переменные и проинтегрировав,

где N 0 – начальное число нераспавшихся ядер (в момент времени t = 0); N – число нераспавшихся ядер в момент времени t . Можно видеть, что число нераспавшихся ядер убывает со временем экспоненциально. За время τ = 1/λ количество нераспавшихся ядер уменьшится в e ≈ 2,7 раза. Величину τ называют средним временем жизни радиоактивного ядра.

Еще одной величиной, характеризующей интенсивность радиоактивного распада является период полураспада Т – это промежуток времени, за который в среднем число нераспавшихся ядер уменьшается вдвое.

Период полураспада – основная величина, характеризующая скорость радиоактивного распада. Чем меньше период полураспада, тем интенсивнее протекает распад.

Закон радиоактивного распада можно записать в другом виде, используя в качестве основания число 2, а не e :

Рис. 2 иллюстрирует закон радиоактивного распада.

Рисунок 2. Закон радиоактивного распада.

Радиоактивность применяется для датирования археологических и геологических находок по концентрации радиоактивных изотопов (радиоуглеродный метод, который заключается в следующем: нестабильный изотоп углерода возникает в атмосфере вследствие ядерных реакций, вызываемых космическими лучами. Небольшой процент этого изотопа содержится в воздухе наряду с обычным стабильным изотопом . Растения и другие организмы потребляют углерод из воздуха, и в них накапливаются оба изотопа в той же пропорции, как и в воздухе. После гибели растений они перестают потреблять углерод и нестабильный изотоп в результате β-распада постепенно превращается в азот с периодом полураспада 5730 лет. Путем точного измерения относительной концентрации радиоактивного углерода в останках древних организмов можно определить время их гибели).

К числу радиоактивных процессов относятся: 1) -распад; 2) β-распад (в том числе и электронный захват); 3) γ- распад; 4) спонтанное деление тяжелых ядер; 5) протонная радиоактивность – ядро испускает один или два протона (Флеров, СССР,1963).

Радиоактивный распад происходит в соответствии с правилами смещения:

Альфа-распад . Альфа-распадом называется самопроизвольное превращение атомного ядра, которое называют материнским в другое (дочернее) ядро, при этом испускается α -частица – ядро атома гелия .

Примером такого процесса может служить α -распад радия:

α -распад ядер во многих случаях сопровождается γ -излучением.

Бета-распад . Если α – распад характерен для тяжелых ядер, то β – распад – практически для всех. При β -распаде зарядовое число Z увеличивается на единицу, а массовое число A остается неизменным.

Известны три разновидности β – распада: 1) электронный

+

Где - антинейтрино – античастица по отношению к нейтрино.

- электронноенейтрино (маленький нейтрон) – частица с нулевыми значениями массы и заряда. Из-за отсутствия у нейтрино заряда и массы эта частица очень слабо взаимодействует с атомами вещества, поэтому ее чрезвычайно трудно обнаружить в эксперименте. Эта частица была обнаружена лишь в 1953 г. В настоящее время известно, что существует несколько разновидностей нейтрино. Участвует (кроме гравитационного) только в слабом взаимодействии.

2) позитронный β + -распад, при котором из ядра вылетают позитрон и нейтрино .

+

Позитрон – это частица-двойник электрона, отличающаяся от него только знаком заряда. (Существование позитрона было предсказано выдающимся физиком П. Дираком в 1928 г. Через несколько лет позитрон был обнаружен в составе космических лучей).

3) Электронный захват (К – захват) – ядро захватывает орбитальный электрон К – оболочки .

+

Гамма-распад . Процесс внутриядерный и испускание происходит не материнским, а дочерним ядром. В отличие от α - и β -распадов γ -распад не связан с изменением внутренней структуры ядра и не сопровождается изменением зарядового или массового чисел.

(Радиоактивное излучение всех видов оказывают очень сильное биологическое воздействие на живые организмы, которое заключается в процессах возбуждения и ионизации атомов и молекул, входящих в состав живых клеток. Под действием ионизирующей радиации разрушаются сложные молекулы и клеточные структуры, что приводит к лучевому поражению организма) .

(Серьезную опасность для здоровья человека может представлять инертный, бесцветный, радиоактивный газ радон . Радон является продуктом α -распада радия и имеет период полураспада T = 3,82 сут. Он может накапливаться в закрытых помещениях. Попадая в легкие, радон испускает α -частицы и превращается в полоний , который не является химически инертным веществом. Далее следует цепь радиоактивных превращений серии урана. Человек в среднем получает 55 % ионизирующей радиации за счет радона и только 11 % за счет медицинских обслуживаний. Вклад космических лучей составляет примерно 8 %).

Ядерные реакции

Ядерная реакция – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов.

Символически можно записать: Х + а → Y + b или Х (а,b) Y , где Х , Y – исходное и конечное ядра; а и b – бомбардирующая и испускаемая частицы.

При ядерных реакциях выполняется несколько законов сохранения : импульса, энергии, момента импульса, заряда, спина. В дополнение к этим классическим законам сохранения при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (т.е. числа нуклонов – протонов и нейтронов). Выполняется также ряд других законов сохранения, специфических для ядерной физики и физики элементарных частиц.

Классификация ядерных реакций :

1) по роду участвующих в них частиц – реакции под действием нейтронов; заряженных частиц; γ – квантов;

2) по энергии вызывающих их частиц – реакции при малых, средних и высоких энергиях;

3) по роду участвующих в них ядер;

4) по характеру происходящих ядерных превращений – реакции с испусканием нейтронов; заряженных частиц; реакции захвата.

Ядерные реакции сопровождаются энергетическими превращениями. Энергетическим выходом ядерной реакции называется величина

Q = ()c 2 = ΔMc 2 .

где ∑M i – сумма масс частиц, вступивших в ядерную реакцию;

M к – сумма масс образовавшихся частиц. Величина ΔM называется дефектом масс . Ядерные реакции могут протекать с выделением (Q > 0) - экзотермические или с поглощением энергии (Q < 0) - эндотермические.

Возможны два принципиально различных способа освобождения ядерной энергии.

1. Деление тяжелых ядер . Реакция деления – это процесс, при котором нестабильное ядро делится на два крупных фрагмента сравнимых масс.

В 1939 году немецкими учеными О. Ганом и Ф. Штрассманом было открыто деление ядер урана. Уран встречается в природе в виде двух изотопов: (99,3 %) и (0,7 %).

Основной интерес для ядерной энергетики представляет реакция деления ядра . В результате деления ядра, инициированного нейтроном, возникают новые нейтроны, способные вызвать реакции деления других ядер. При делении ядра урана освобождается энергия порядка 210 МэВ на один атом урана. При полном делении всех ядер, содержащихся в 1 г урана, выделяется такая же энергия, как и при сгорании 3 т угля или 2,5 т нефти.

При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т.д. Такой лавинообразный процесс называется цепной реакцией . Схема развития цепной реакции деления ядер урана представлена на рис.3.

Рисунок 2. Схема развития цепной реакции

Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем. Устройство, в котором поддерживается управляемая реакция деления ядер, называется ядерным (или атомным ) реактором .

Первый ядерный реактор был построен в 1942 году в США под руководством Э. Ферми. В нашей стране первый реактор был построен в 1946 году под руководством И.В. Курчатова.

2. Термоядерные реакции . Второй путь освобождения ядерной энергии связан с реакциями синтеза. При слиянии легких ядер и образовании нового ядра должно выделяться большое количество энергии. Реакции слияния легких ядер носят название термоядерных реакций , так как они могут протекать только при очень высоких температурах. Расчет необходимой для этого температуры T приводит к величине порядка 10 8 –10 9 К. При такой температуре вещество находится в полностью ионизированном состоянии, которое называется плазмой .

Осуществление управляемых термоядерных реакций даст человечеству новый экологически чистый и практически неисчерпаемый источник энергии. Однако получение сверхвысоких температур и удержание плазмы, нагретой до миллиарда градусов, представляет собой труднейшую научно-техническую задачу на пути осуществления управляемого термоядерного синтеза. Один из способов ее решения - удержание горячей плазмы в ограниченном объеме сильными магнитными полями. Этот способ предложили наши соотечественники физики-теоретики А.Д. Сахаров (1921-1989), И.Е. Тамм (1895-1971) и др. Для удержания плазмы создаются сложнейшие в техническом исполнении термоядерные реакторы. Один из них - Токамак-10, впервые созданный в 1975 г. в Институте атомной энергии им. И.В. Курчатова. В последнее время сооружаются новые модификации термоядерных реакторов. Управляемый термоядерный синтез - это важнейшая проблема современного естествознания, с решением которой, как предполагается, откроется новый перспективный путь развития энергетики.

На данном этапе развития науки и техники удалось осуществить только неуправляемую реакцию синтеза в водородной бомбе. Высокая температура, необходимая для ядерного синтеза, достигается здесь с помощью взрыва обычной урановой или плутониевой бомбы.

Термоядерные реакции играют чрезвычайно важную роль в эволюции Вселенной. Энергия излучения Солнца и звезд имеет термоядерное происхождение.z:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\buttonModel_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\buttonModel_h.gifz:\Program Files\Physicon\Open Physics 2.5 part 2\design\images\buttonModel_h.gif

История изучения радиоактивности началась 1 марта 1896 года, когда известный французский ученый случайно обнаружил странность в излучении солей урана. Оказалось, что фотопластинки, расположенные в одном ящике с образцом, засвечены. К этому привело странное, обладающее высокой проникающей способностью излучение, которым обладал уран. Это свойство обнаружилось у самых тяжелых элементов, завершающих периодическую таблицу. Ему дали название "радиоактивность".

Вводим характеристики радиоактивности

Данный процесс - самопроизвольное превращение атома изотопа элемента в иной изотоп с одновременным выделением элементарных частиц (электронов, ядер атомов гелия). Превращение атомов оказалось самопроизвольным, не требующим поглощения энергии извне. Основной величиной, характеризующей процесс выделения энергии в ходе называют активность.

Активностью радиоактивного образца называют вероятное количество распадов данного образца за единицу времени. В интернациональной) единицей измерения ее назван беккерель (Бк). В 1 беккерель принята активность такого образца, в котором в среднем происходит 1 распад в секунду.

А=λN, где λ- постоянная распада, N - число активных атомов в образце.

Выделяют α, β, γ-распады. Соответствующие уравнения называют правилами смещения:

Временной интервал в радиоактивности

Момент развала частицы невозможно установить для данного конкретного атома. Для него это скорее «несчастный случай», нежели закономерность. Выделение энергии, характеризующее этот процесс, определяют как активность образца.

Замечено, что она с течением времени меняется. Хотя отдельные элементы демонстрируют удивительное постоянство степени излучения, существуют вещества, активность которых уменьшается в несколько раз за достаточно короткий промежуток времени. Удивительное разнообразие! Возможно ли найти закономерность в этих процессах?

Установлено, что существует время, в течение которого ровно половина атомов данного образца претерпевает распад. Этот интервал времени получил название "период полураспада". В чем смысл введения этого понятия?

полураспада?

Представляется, что за время, равное периоду, ровно половина всех активных атомов данного образца распадается. Но означает ли это, что за время в два периода полураспада все активные атомы полностью распадутся? Совсем нет. Через определенный момент в образце остается половина радиоактивных элементов, через такой же промежуток времени из оставшихся атомов распадается еще половина, и так далее. При этом излучение сохраняется длительное время, значительно превышающее период полураспада. Значит, активные атомы сохраняются в образце независимо от излучения

Период полураспада - это величина, зависящая исключительно от свойств данного вещества. Значение величины определено для многих известных радиоактивных изотопов.

Таблица: «Полупериод распада отдельных изотопов»

Название

Обозначение

Вид распада

Период полураспада

0,001 секунд

бета, гамма

альфа, гамма

альфа, гамма

4,5 млрд лет

Определение периода полураспада выполнено экспериментально. В ходе лабораторных исследований многократно проводится измерение активности. Поскольку лабораторные образцы минимальных размеров (безопасность исследователя превыше всего), эксперимент проводится с различным интервалом времени, многократно повторяясь. В его основу положена закономерность изменения активности веществ.

С целью определения периода полураспада производится измерение активности данного образца в определенные промежутки времени. С учетом того, что данный параметр связан с количеством распавшихся атомов, используя закон радиоактивного распада, определяют период полураспада.

Пример определения для изотопа

Пусть число активных элементов исследуемого изотопа в данный момент времени равно N, интервал времени, в течение которого ведется наблюдение t 2 - t 1 , где моменты начала и окончания наблюдения достаточно близки. Допустим, что n - число атомов, распавшихся в данный временной интервал, тогда n = KN(t 2 - t 1).

В данном выражении K = 0,693/T½ - коэффициент пропорциональности, называющийся константой распада. T½ - период полураспада изотопа.

Примем временной интервал за единицу. При этом K = n/N указывает долю от присутствующих ядер изотопа, распадающихся в единицу времени.

Зная величину константы распада, можно определить и полупериод распада: T½ = 0,693/K.

Отсюда следует, что за единицу времени распадается не определенное количество активных атомов, а определенная их доля.

Закон радиоактивного распада (ЗРР)

Период полураспада положен в основу ЗРР. Закономерность выведена Фредерико Содди и Эрнестом Резерфордом на основе результатов экспериментальных исследований в 1903 году. Удивительно, что многократные измерения, выполненные при помощи приборов, далеких от совершенства, в условиях начала ХХ столетия, привели к точному и обоснованному результату. Он стал основой теории радиоактивности. Выведем математическую запись закона радиоактивного распада.

Пусть N 0 - количество активных атомов в данный момент времени. По истечении интервала времени t нераспавшимися останутся N элементов.

К моменту времени, равному периоду полураспада, останется ровно половина активных элементов: N=N 0 /2.

По прошествии еще одного периода полураспада в образце остаются: N=N 0 /4=N 0 /2 2 активных атомов.

По прошествии времени, равному еще одному периоду полураспада, образец сохранит только: N=N 0 /8=N 0 /2 3 .

К моменту времени, когда пройдет n периодов полураспада, в образце останется N=N 0 /2 n активных частиц. В этом выражении n=t/T½: отношение времени исследования к периоду полураспада.

ЗРР имеет несколько иное математическое выражение, более удобное в решении задач: N=N 0 2 - t/ T½ .

Закономерность позволяет определить, помимо периода полураспада, число атомов активного изотопа, нераспавшихся в данный момент времени. Зная число атомов образца в начале наблюдения, через некоторое время можно определить время жизни данного препарата.

Определить период полураспада формула закона радиоактивного распада помогает лишь при наличии определенных параметров: числа активных изотопов в образце, что узнать достаточно сложно.

Следствия закона

Записать формулу ЗРР можно, используя понятия активности и массы атомов препарата.

Активность пропорциональна числу радиоактивных атомов: A=A 0 .2 -t/T . В этой формуле А 0 - активность образца в начальный момент времени, А - активность по истечении t секунд, Т - период полураспада.

Масса вещества может быть использована в закономерности: m=m 0 .2 -t/T

В течение любых равных промежутков времени распадается абсолютно одинаковая доля радиоактивных атомов, имеющихся в наличии в данном препарате.

Границы применимости закона

Закон во всех смыслах является статистическим, определяя процессы, протекающие в микромире. Понятно, что период полураспада радиоактивных элементов - величина статистическая. Вероятностный характер событий в атомных ядрах предполагает, что произвольное ядро может развалиться в любой момент. Предсказать событие невозможно, можно лишь определить его вероятность в данный момент времени. Как следствие, период полураспада не имеет смысла:

  • для отдельного атома;
  • для образца минимальной массы.

Время жизни атома

Существование атома в его первоначальном состоянии может длиться секунду, а может и миллионы лет. Говорить о времени жизни данной частицы также не приходится. Введя величину, равную среднему значению времени жизни атомов, можно вести разговор о существовании атомов радиоактивного изотопа, последствиях радиоактивного распада. Период полураспада ядра атома зависит от свойств данного атома и не зависит от других величин.

Можно ли решить проблему: как найти период полураспада, зная среднее время жизни?

Определить период полураспада формула связи среднего времени жизни атома и постоянной распада помогает не меньше.

τ= T 1/2 /ln2= T 1/2 /0,693=1/ λ.

В этой записи τ - среднее время жизни, λ - постоянная распада.

Использование периода полураспада

Применение ЗРР для определения возраста отдельных образцов получило широкое распространение в исследованиях конца ХХ века. Точность определения возраста ископаемых артефактов настолько возросла, что может дать представление о времени жизни за тысячелетия до нашей эры.

Ископаемых органических образцов основан на изменении активности углерода-14 (радиоактивного изотопа углерода), присутствующего во всех организмах. Он попадает в живой организм в процессе обмена веществ и содержится в нем в определенной концентрации. После смерти обмен веществ с окружающей средой прекращается. Концентрация радиоактивного углерода падает вследствие естественного распада, активность уменьшается пропорционально.

При наличии такого значения, как период полураспада, формула закона радиоактивного распада помогает определить время с момента прекращения жизнедеятельности организма.

Цепочки радиоактивного превращения

Исследования радиоактивности проводились в лабораторных условиях. Удивительная способность радиоактивных элементов сохранять активность в течение часов, суток и даже лет не могла не вызывать удивления у физиков начала ХХ столетия. Исследования, к примеру, тория, сопровождались неожиданным результатом: в закрытой ампуле активность его была значительной. При малейшем дуновении она падала. Вывод оказался прост: превращение тория сопровождается выделением радона (газ). Все элементы в процессе радиоактивности превращаются в совершенно иное вещество, отличающееся и физическими, и химическими свойствами. Это вещество, в свою очередь, также нестабильно. В настоящее время известно три ряда аналогичных превращений.

Знания о подобных превращениях крайне важны при определении времени недоступности зон, зараженных в процессе атомных и ядерных исследований или катастроф. Период полураспада плутония - в зависимости от его изотопа - лежит в интервале от 86 лет (Pu 238) до 80 млн лет (Pu 244). Концентрация каждого изотопа дает представление о периоде обеззараживания территории.

Самый дорогой металл

Известно, что в наше время есть металлы значительно более дорогие, чем золото, серебро и платина. К ним относится и плутоний. Интересно, что в природе созданный в процессе эволюции плутоний не встречается. Большинство элементов получены в лабораторных условиях. Эксплуатация плутония-239 в ядерных реакторах дала возможность ему стать чрезвычайно популярным в наши дни. Получение достаточного для использования в реакторах количества данного изотопа делает его практически бесценным.

Плутоний-239 получается в естественных условиях как следствие цепочки превращений урана-239 в нептуний-239 (период полураспада - 56 часов). Аналогичная цепочка позволяет накопить плутоний в ядерных реакторах. Скорость появления необходимого количества превосходит естественную в миллиарды раз.

Применение в энергетике

Можно много говорить о недостатках атомной энергетики и о «странностях» человечества, которое практически любое открытие использует для уничтожения себе подобных. Открытие плутония-239, который способен принимать участие в позволило использовать его в качестве источника мирной энергии. Уран-235, являющийся аналогом плутония, встречается на Земле крайне редко, выделить его из значительно сложнее, чем получить плутоний.

Возраст Земли

Радиоизотопный анализ изотопов радиоактивных элементов дает более точное представление о времени жизни того или иного образца.

Использование цепочки превращений "уран - торий", содержащихся в земной коре, дает возможность определить возраст нашей планеты. Процентное соотношение этих элементов в среднем по всей земной коре лежит в основе этого метода. По последним данным, возраст Земли составляет 4,6 миллиарда лет.

Необходимое условие радиоактивного распада заключается в том, что масса исходного ядра должна превышать сумму масс продуктов распада. Поэтому каждый радиоактивный распад происходит с выделением энергии .

Радиоактивность подразделяют на естественную и искусственную. Первая относится к радиоактивным ядрам, существующим в природных условиях, вторая - к ядрам, полученным посредством ядерных реакций в лабораторных условиях. Принципиально они не отличаются друг от друга.

К основным типам радиоактивности относятся α-, β- и γ-распады. Прежде чем характеризовать их более подробно, рассмотрим общий для всех видов радиоактивности закон протекания этих процессов во времени.

Одинаковые ядра претерпевают распад за различные времена, предсказать которые заранее нельзя. Поэтому можно считать, что число ядер, распадающихся за малый промежуток времени dt , пропорционально как числу N имеющихся ядер в этот момент, так и dt :

Интегрирование уравнения (3.4) дает:

Соотношение (3.5) называют основным законом радиоактивного распада. Как видно, число N еще не распавшихся ядер убывает со временем экспоненциально.

Интенсивность радиоактивного распада характеризуют числом ядер, распадающихся в единицу времени. Из (3.4) видно, что эта величина | dN / dt | = λN . Ее называют активностью A . Таким образом активность:

.

Ее измеряют в беккерелях (Бк) , 1 Бк = 1 распад / с; а также в кюри (Ки) , 1 Ки = 3.7∙10 10 Бк.

Активность в расчете на единицу массы радиоактивного препарата называют удельной активностью.

Вернемся к формуле (3.5). Наряду с постоянной λ и активностью A процесс радиоактивного распада характеризуют еще двумя величинами: периодом полураспада T 1/2 и средним временем жизни τ ядра.

Период полураспада T 1/2 - время, за которое исходное число радиоактивных ядер в среднем уменьшится в двое:

,
откуда
.

Среднее время жизни τ определим следующим образом. Число ядер δN (t ), испытавших распад за промежуток времени (t , t + dt ), определяется правой частью выражения (3.4): δN (t ) = λNdt . Время жизни каждого из этих ядер равно t . Значит сумма времен жизни всех N 0 имевшихся первоначально ядер определяется интегрированием выражения tδN (t ) по времени от 0 до ∞. Разделив сумму времен жизни всех N 0 ядер на N 0 , мы и найдем среднее время жизни τ рассматриваемого ядра:

Заметим, что τ равно, как следует из (3.5) промежутку времени, за которое первоначальное количество ядер уменьшается в e раз.

Сравнивая (3.8) и (3.9.2), видим, что период полураспада T 1/2 и среднее время жизни τ имеют один и тот же порядок и связаны между собой соотношением:

.

Сложный радиоактивный распад

Сложный радиоактивный распад может протекать в двух случаях:

Физический смысл этих уравнений состоит в том, что количество ядер 1 убывает за счет их распада, а количество ядер 2 пополняется за счет распада ядер 1 и убывает за счет своего распада. Например, в начальный момент времени t = 0 имеется N 01 ядер 1 и N 02 ядер 2. С такими начальными условиями решение системы имеет вид:

Если при этом N 02 = 0, то

.

Для оценки значения N 2 (t ) можно использовать графический метод (см. рисунок 3.2) построения кривых e −λt и (1 − e −λt ). При этом ввиду особых свойств функции e −λt очень удобно ординаты кривой строить для значений t , соответствующих T , 2T , … и т.д. (см. таблицу 3.1). Соотношение (3.13.3) и рисунок 3.2 показывают, что количество радиоактивного дочернего вещества возрастает с течением времени и при t >> T 2 (λ 2 t >> 1) приближается к своему предельному значению:

и носит название векового , или секулярного равновесия . Физический смысл векового уравнения очевиден.

t e −λt 1 − e −λt
0 1 0
1T 1/2 = 0.5 0.5
2T (1/2) 2 = 0.25 0.75
3T (1/2) 3 = 0.125 0.875
... ... ...
10T (1/2) 10 ≈ 0.001 ~0.999


Рисунок 3.3. Сложный радиоактивный распад.
Так как, согласно уравнению (3.4), λN равно числу распадов в единицу времени, то соотношение λ 1 N 1 = λ 2 N 2 означает, что число распадов дочернего вещества λ 2 N 2 равно числу распадов материнского вещества, т.е. числу образующихся при этом ядер дочернего вещества λ 1 N 1 . Вековое уравнение широко используется для определения периодов полураспада долгоживущих радиоактивных веществ. Этим уравнением можно пользоваться при сравнении двух взаимно превращающихся веществ, из которых второе имеет много меньший период полураспада, чем первое (T 2 << T 1 ) при условии, что это сравнение производится в момент времени t >> T 2 (T 2 << t << T 1 ). Примером последовательного распада двух радиоактивных веществ является превращение радия Ra в радон Rn. Известно, что 88 Ra 226 , испуская с периодом полураспада T 1 >> 1600 лет α-частицы, превращается в радиоактивный газ радон (88 Rn 222), который сам является радиоактивным и испускает α-частицы с периодом полураспада T 2 ≈ 3.8 дня . В этом примере как раз T 1 >> T 2 , так что для моментов времени t << T 1 решение уравнений (3.12) может быть записано в форме (3.13.3).

Для дальнейшего упрощения надо, чтобы начальное количество ядер Rn было равно нулю (N 02 = 0 при t = 0). Это достигается специальной постановкой опыта, в котором изучается процесс превращения Ra в Rn. В этом опыте препарат Ra помещается в стеклянную колбочку с трубкой, соединенной с насосом. Во время работы насоса выделяющийся газообразный Rn сразу же откачивается, и концентрация его в колбочке равна нулю. Если в некоторый момент при работающем насосе изолировать колбочку от насоса, то с этого момента, который можно принять за t = 0, количество ядер Rn в колбочке начнет возрастать по закону (3.13.3):N Ra и N Rn - точным взвешиванием, а λ Rn - по определению периода полураспада Rn, который имеет удобное для измерений значение 3.8 дня . Таким образом, четвертая величина λ Ra может быть вычислена. Это вычисление дает для периода полураспада радия T Ra ≈ 1600 лет , что совпадает с результатами определения T Ra методом абсолютного счета испускаемых α-частиц.

Радиоактивность Ra и Rn была выбрана в качестве эталона при сравнении активностей различных радиоактивных веществ. За единицу радиоактивности - 1 Ки - приняли активность 1 г радия или находящегося с ним в равновесии количества радона. Последнее легко может быть найдено из следующих рассуждений.

Известно, что 1 г радия претерпевает в секунду ~3.7∙10 10 распадов . Следовательно.

Термин «радиоактивность», получивший название от латинских слов «radio» - «излучаю» и «activus» - «действенный», означает самопроизвольное превращение атомных ядер, сопровождающееся испусканием гамма-излучения, элементарных частиц или более лёгких ядер. В основе всех известных науке типов радиоактивных превращений лежат фундаментальные (сильные и слабые) взаимодействия частиц, входящих в состав атома. Неизвестный до этого вид проникающего излучения, испускаемого ураном, обнаружил в 1896 году французский ученый Антуан Анри Беккерель, а в широкий обиход понятие «радиоактивность» ввела в начале 20-го века Мария Кюри, которая, исследуя невидимые лучи, испускаемые некоторыми минералами, сумела выделить чистый радиоактивный элемент - радий.

Отличия радиоактивных превращений от химических реакций

Главная особенность радиоактивных превращений заключается в том, что они происходят самопроизвольно, в то время как для химических реакций в любом случае требуются какие-либо внешние воздействия. Кроме того, радиоактивные превращения протекают непрерывно и всегда сопровождаются выделением определенного количества энергии, которое зависит от силы взаимодействия атомных частиц между собой. На скорость протекания реакций внутри атомов не влияет ни температура, ни наличие электрического и магнитного полей, ни применение самого эффективного химического катализатора, ни давление, ни агрегатное состояние вещества. Радиоактивные превращения не зависят ни от одного внешнего фактора и не могут быть ни ускорены, ни замедлены.

Закон радиоактивного распада

Интенсивность радиоактивного распада, а также его зависимость от количества атомов и времени, выражена в Законе радиоактивного распада, открытом Эрнестом Резерфордом и Фредериком Содди в 1903 году. Для того чтобы прийти к определенным выводам, нашедшим впоследствии свое отражение в новом законе, ученые провели следующий эксперимент: они отделяли один из радиоактивных продуктов и изучали его самостоятельную активность отдельно от радиоактивности вещества, из которого он был выделен. В итоге, было обнаружено, что активность любых радиоактивных продуктов вне зависимости от химического элемента со временем уменьшается в геометрической прогрессии. Исходя из этого, ученые сделали вывод, что скорость радиоактивного превращения всегда пропорциональна числу систем, которые еще не подверглись превращению.

Формула Закона радиоактивного распада выглядит следующим образом:

согласно которой число распадов −dN, произошедшее за период времени dt (очень короткий интервал), пропорционально числу атомов N. В формуле Закона радиоактивного распада есть еще одна важная величина - постоянная распада (или обратная величина периода полураспада) λ, которая характеризует вероятность распада ядра в единицу времени.

Какие химические элементы являются радиоактивными?

Нестабильность атомов химических элементов - это, скорее, исключение, чем закономерность; в большинстве своем они стабильны и с течением времени не изменяются. Однако есть определенная группа химических элементов, атомы которых более других подвержены распаду и, распадаясь, излучают энергию, а также выделяют новые частицы. Самыми распространенными химическими элементами являются радий, уран и плутоний, обладающие способностью превращаться в другие элементы с более простыми атомами (так, например, уран превращается в свинец).

1. Радиоактивность. Основной закон радиоактивного распада. Активность.

2. Основные виды радиоактивного распада.

3. Количественные характеристики взаимодействия ионизирующего излучения с веществом.

4. Естественная и искусственная радиоактивность. Радиоактивные ряды.

5. Использование радионуклидов в медицине.

6. Ускорители заряженных частиц и их использование в медицине.

7. Биофизические основы действия ионизирующего излучения.

8. Основные понятия и формулы.

9. Задачи.

Интерес медиков к естественной и искусственной радиоактивности обусловлен следующим.

Во-первых, все живое постоянно подвергается действию естественного радиационного фона, который составляют космическая радиация, излучение радиоактивных элементов, залегающих в поверхностных слоях земной коры, и излучение элементов, попадающих в организм животных вместе с воздухом и пищей.

Во-вторых, радиоактивное излучение применяется в самой медицине в диагностических и терапевтических целях.

33.1. Радиоактивность. Основной закон радиоактивного распада. Активность

Явление радиоактивности было открыто в 1896 г. А. Беккерелем, который наблюдал спонтанное испускание солями урана неизвестного излучения. Вскоре Э. Резерфорд и супруги Кюри установили, что при радиоактивном распаде испускаются ядра Не (α-частицы), электроны (β-частицы) и жесткое электромагнитное излучение (γ-лучи).

В 1934 г. был открыт распад с вылетом позитронов (β + -распад), а в 1940 г. был открыт новый тип радиоактивности - спонтанное деление ядер: делящееся ядро разваливается на два осколка сравнимой массы с одновременным испусканием нейтронов и γ -квантов. Протонная радиоактивность ядер наблюдалась в 1982 г.

Радиоактивность - способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием частиц.

Атомные ядра состоят из протонов и нейтронов, которые имеют обобщающее название - нуклоны. Количество протонов в ядре определяет химические свойства атома и обозначается Z (это порядковый номер химического элемента). Количество нуклонов в ядре называют массовым числом и обозначают А. Ядра с одинаковым порядковым номером и различными массовыми числами называются изотопами. Все изотопы одного химического элемента имеют одинаковые химические свойства. Физические свойства изотопов могут различаться весьма сильно. Для обозначения изотопов используют символ химического элемента с двумя индексами: A Z Х. Нижний индекс - порядковый номер, верхний - массовое число. Часто нижний индекс опускают, так как на него указывает сам символ элемента. Например, пишут 14 С вместо 14 6 С.

Способность ядра к распаду зависит от его состава. У одного и того же элемента могут быть и стабильный, и радиоактивный изотопы. Например, изотоп углерода 12 С стабилен, а изотоп 14 С радиоактивен.

Радиоактивный распад - явление статистическое. Способность изотопа к распаду характеризует постоянная распада λ.

Постоянная распада - вероятность того, что ядро данного изотопа распадется за единицу времени.

Вероятность распада ядра за малое время dt находится по формуле

Учитывая формулу (33.1), получим выражение, определяющее количество распавшихся ядер:

Формула (33.3) называется основным законом радиоактивного распада.

Число радиоактивных ядер убывает со временем по экспоненциальному закону.

На практике вместо постоянной распада λ часто используют другую величину, называемую периодом полураспада.

Период полураспада (Т) - время, в течение которого распадается половина радиоактивных ядер.

Закон радиоактивного распада с использованием периода полураспада записывается так:

График зависимости (33.4) показан на рис. 33.1.

Период полураспада может быть как очень большим, так и очень маленьким (от долей секунды до многих миллиардов лет). В табл. 33.1 представлены периоды полураспада для некоторых элементов.

Рис. 33.1. Убывание количества ядер исходного вещества при радиоактивном распаде

Таблица 33.1. Периоды полураспада для некоторых элементов

Для оценки степени радиоактивности изотопа используют специальную величину, называемую активностью.

Активность - число ядер радиоактивного препарата, распадающихся за единицу времени:

Единица измерения активности в СИ - беккерель (Бк), 1 Бк соответствует одному акту распада в секунду. На практике более упот-

ребительна внесистемная единица активности - кюри (Ки), равная активности 1 г 226 Ra: 1 Ки = 3,7х10 10 Бк.

С течением времени активность убывает так же, как убывает количество нераспавшихся ядер:

33.2. Основные виды радиоактивного распада

В процессе изучения явления радиоактивности были обнаружены 3 вида лучей, испускаемых радиоактивными ядрами, которые получили названия α-, β- и γ-лучей. Позже было установлено, что α- и β-частицы - продукты двух различных видов радиоактивного распада, а γ-лучи являются побочным продуктом этих процессов. Кроме того, γ-лучи сопровождают и более сложные ядерные превращения, которые здесь не рассматриваются.

Альфа-распад состоит в самопроизвольном превращении ядер с испусканием α-частиц (ядра гелия).

Схема α-распада записывается в виде

где Х, Y - символы материнского и дочернего ядер соответственно. При записи α-распада вместо «α« можно писать «Не».

При этом распаде порядковый номер Z элемента уменьшается на 2, а массовое число А - на 4.

При α-распаде дочернее ядро, как правило, образуется в возбужденном состоянии и при переходе в основное состояние испускает γ-квант. Общее свойство сложных микрообъектов заключается в том, что они обладают дискретным набором энергетических состояний. Это относится и к ядрам. Поэтому γ-излучение возбужденных ядер обладает дискретным спектром. Следовательно, и энергетический спектр α-частиц является дискретным.

Энергия испускаемых α-частиц практически для всех α-активных изотопов лежит в пределах 4-9 МэВ.

Бета-распад состоит в самопроизвольном превращении ядер с испусканием электронов (или позитронов).

Установлено, что β-распад всегда сопровождается испусканием нейтральной частицы - нейтрино (или антинейтрино). Эта частица практически не взаимодействует с веществом, и в дальнейшем рассматриваться не будет. Энергия, выделяющаяся при β-распаде, распределяется между β-частицей и нейтрино случайным образом. Поэтому энергетический спектр β-излучения сплошной (рис. 33.2).

Рис. 33.2. Энергетический спектр β-распада

Существует два вида β-распада.

1. Электронный β - -распад заключается в превращении одного ядерного нейтрона в протон и электрон. При этом появляется еще одна частица ν" - антинейтрино:

Электрон и антинейтрино вылетают из ядра. Схема электронного β - -распада записывается в виде

При электронном β-распаде порядковый номер Z-элемента увеличивается на 1, массовое число А не изменяется.

Энергия β-частиц лежит в диапазоне 0,002-2,3 МэВ.

2. Позитронный β + -распад заключается в превращении одного ядерного протона в нейтрон и позитрон. При этом появляется еще одна частица ν - нейтрино:

Сам электронный захват не порождает ионизирующих частиц, но он сопровождается рентгеновским излучением. Это излучение возникает, когда место, освободившееся при поглощении внутреннего электрона, заполняется электроном с внешней орбиты.

Гамма-излучение имеет электромагнитную природу и представляет собой фотоны с длиной волны λ ≤ 10 -10 м.

Гамма-излучение не является самостоятельным видом радиоактивного распада. Излучение этого типа почти всегда сопровождает не только α-распад и β-распад, но и более сложные ядерные реакции. Оно не отклоняется электрическим и магнитным полями, обладает относительно слабой ионизирующей и очень большой проникающей способностями.

33.3. Количественные характеристики взаимодействия ионизирующего излучения с веществом

Воздействие радиоактивного излучения на живые организмы связано с ионизацией, которую оно вызывает в тканях. Способность частицы к ионизации зависит как от ее вида, так и от ее энергии. По мере продвижения частицы в глубь вещества она теряет свою энергию. Этот процесс называют ионизационным торможением.

Для количественной характеристики взаимодействия заряженной частицы с веществом используется несколько величин:

После того как энергия частицы станет ниже энергии ионизации, ее ионизирующее действие прекращается.

Средний линейный пробег (R) заряженной ионизирующей частицы - путь, пройденный ею в веществе до потери ионизирующей способности.

Рассмотрим некоторые характерные особенности взаимодействия различных видов излучения с веществом.

Альфа-излучение

Альфа-частица практически не отклоняется от первоначального направления своего движения, так как ее масса во много раз больше

Рис. 33.3. Зависимость линейной плотности ионизации от пути, пройденного α-частицей в среде

массы электрона, с которым она взаимодействует. По мере ее проникновения в глубь вещества плотность ионизации сначала возрастает, а при завершении пробега (х = R) резко спадает до нуля (рис. 33.3). Это объясняется тем, что при уменьшении скорости движения возрастает время, которое она проводит вблизи молекулы (атома) среды. Вероятность ионизации при этом увеличивается. После того как энергия α-частицы станет сравнимой с энергией молекулярно-теплового движения, она захватывает два электрона в веществе и превращается в атом гелия.

Электроны, образовавшиеся в процессе ионизации, как правило, уходят в сторону от трека α-частицы и вызывают вторичную ионизацию.

Характеристики взаимодействия α-частиц с водой и мягкими тканями представлены в табл. 33.2.

Таблица 33.2. Зависимость характеристик взаимодействия с веществом от энергии α-частиц

Бета-излучение

Для движения β -частицы в веществе характерна криволинейная непредсказуемая траектория. Это связано с равенством масс взаимодействующих частиц.

Характеристики взаимодействия β -частиц с водой и мягкими тканями представлены в табл. 33.3.

Таблица 33.3. Зависимость характеристик взаимодействия с веществом от энергии β-частиц

Как и у α-частиц, ионизационная способность β-частиц растет при уменьшении энергии.

Гамма-излучение

Поглощение γ -излучения веществом подчиняется экспоненциальному закону, аналогичному закону поглощения рентгеновского излучения:

Основными процессами, отвечающими за поглощение γ -излучения, являются фотоэффект и комптоновское рассеяние. При этом образуется относительно небольшое количество свободных электронов (первичная ионизация), которые обладают очень высокой энергией. Они-то и вызывают процессы вторичной ионизации, которая несравненно выше первичной.

33.4. Естественная и искусственная

радиоактивность. Радиоактивные ряды

Термины естественная и искусственная радиоактивность являются условными.

Естественной называют радиоактивность изотопов, существующих в природе, или радиоактивность изотопов, образующихся в результате природных процессов.

Например, естественной является радиоактивность урана. Естественной является и радиоактивность углерода 14 С, который образуется в верхних слоях атмосферы под действием солнечного излучения.

Искусственной называют радиоактивность изотопов, которые возникают в результате деятельности человека.

Таковой является радиоактивность всех изотопов, получаемых на ускорителях частиц. Сюда же можно отнести и радиоактивность почвы, воды и воздуха, возникающую при атомном взрыве.

Естественная радиоактивность

В начальный период изучения радиоактивности исследователи могли использовать лишь естественные радионуклиды (радиоактивные изотопы), содержащиеся в земных породах в достаточно большом количестве: 232 Th, 235 U, 238 U. С этих радионуклидов начинаются три радиоактивных ряда, заканчивающиеся стабильными изотопами РЬ. В дальнейшем был обнаружен ряд, начинающийся с 237 Np, с конечным стабильным ядром 209 Bi. На рис. 33.4 показан ряд, начинающийся с 238 U.

Рис. 33.4. Уран-радиевый ряд

Элементы этого ряда являются основным источником внутреннего облучения человека. Например, 210 Pb и 210 Po поступают в организм вместе с пищей - они концентрируются в рыбе и моллюсках. Оба этих изотопа накапливаются в лишайниках и поэтому присутствуют в мясе северного оленя. Наиболее весомым из всех естественных источников радиации является 222 Rn - тяжелый инертный газ, получающийся при распаде 226 Ra. На него приходится около половины дозы естественной радиации, получаемой человеком. Образуясь в земной коре, этот газ просачивается в атмосферу и попадает в воду (он хорошо растворим).

В земной коре постоянно присутствует радиоактивный изотоп калия 40 К, который входит в состав природного калия (0,0119 %). Из почвы этот элемент поступает через корневую систему растений и с растительной пищей (зерновые, свежие овощи и фрукты, грибы) - в организм.

Еще одним источником естественной радиации является космическое излучение (15 %). Его интенсивность возрастает в горных районах вследствие уменьшения защитного действия атмосферы. Источники природного радиационного фона указаны в табл. 33.4.

Таблица 33.4. Составляющая природного радиоактивного фона

33.5. Использование радионуклидов в медицине

Радионуклидами называют радиоактивные изотопы химических элементов с малым периодом полураспада. В природе такие изотопы отсутствуют, поэтому их получают искусственно. В современной медицине радионуклиды широко используются в диагностических и терапевтических целях.

Диагностическое применение основано на избирательном накоплении некоторых химических элементов отдельными органами. Йод, например, концентрируется в щитовидной железе, а кальций - в костях.

Введение в организм радиоизотопов этих элементов позволяет обнаруживать области их концентрации по радиоактивному излучению и получать таким образом важную диагностическую информацию. Такой метод диагностики называется методом меченых атомов.

Терапевтическое использование радионуклидов основано на разрушающем действии ионизирующего излучения на клетки опухолей.

1. Гамма-терапия - использование γ-излучения высокой энергии (источник 60 Со) для разрушения глубоко расположенных опухолей. Чтобы поверхностно расположенные ткани и органы не подвергались губительному действию, воздействие ионизирующего излучения осуществляется в разные сеансы по разным направлениям.

2. Альфа-терапия - лечебное использование α-частиц. Эти частицы обладают значительной линейной плотностью ионизации и поглощаются даже небольшим слоем воздуха. Поэтому терапевтическое

применение альфа-лучей возможно при непосредственном контакте с поверхностью органа или при введении внутрь (с помощью иглы). Для поверхностного воздействия применяется радоновая терапия (222 Rn): воздействие на кожу (ванны), органы пищеварения (питье), органы дыхания (ингаляции).

В некоторых случаях лечебное применение α -частиц связано с использованием потока нейтронов. При этом методе в ткань (опухоль) предварительно вводят элементы, ядра которых под действием нейтронов испускают α -частицы. После этого больной орган облучают потоком нейтронов. Таким способом α -частицы образуются непосредственно внутри органа, на который они должны оказать разрушительное воздействие.

В таблице 33.5 указаны характеристики некоторых радионуклидов, используемых в медицине.

Таблица 33.5. Характеристика изотопов

33.6. Ускорители заряженных частиц и их использование в медицине

Ускоритель - установка, в которой под действием электрических и магнитных полей получаются направленные пучки заряженных частиц с высокой энергией (от сотен кэВ до сотен ГэВ).

Ускорители создают узкие пучки частиц с заданной энергией и малым поперечным сечением. Это позволяет оказывать направленное воздействие на облучаемые объекты.

Использование ускорителей в медицине

Ускорители электронов и протонов применяются в медицине для лучевой терапии и диагностики. При этом используются как сами ускоренные частицы, так и сопутствующее рентгеновское излучение.

Тормозное рентгеновское излучение получают, направляя пучок частиц на специальную мишень, которая и является источником рентгеновских лучей. От рентгеновской трубки это излучение отличается значительно большей энергией квантов.

Синхротронное рентгеновское излучение возникает в процессе ускорения электронов на кольцевых ускорителях - синхротронах. Такое излучение обладает высокой степенью направленности.

Прямое действие быстрых частиц связано с их высокой проникающей способностью. Такие частицы проходят поверхностные ткани, не вызывая серьезных повреждений, и оказывают ионизирующее действие в конце своего пути. Подбором соответствующей энергии частиц можно добиться разрушения опухолей на заданной глубине.

Области применения ускорителей в медицине показаны в табл. 33.6.

Таблица 33.6. Применение ускорителей в терапии и диагностике

33.7. Биофизические основы действия ионизирующего излучения

Как уже отмечалось выше, воздействие радиоактивного излучения на биологические системы связано с ионизацией молекул. Процесс взаимодействия излучения с клетками можно разделить на три последовательных этапа (стадии).

1. Физическая стадия состоит в передаче энергии излучения молекулам биологической системы, в результате чего происходит их ионизация и возбуждение. Длительность этой стадии 10 -16 -10 -13 с.

2. Физико-химическая стадия состоит из различного рода реакций, приводящих к перераспределению избыточной энергии возбужденных молекул и ионов. В результате появляются высокоактивные

продукты: радикалы и новые ионы с широким спектром химических свойств.

Длительность этой стадии 10 -13 -10 -10 с.

3. Химическая стадия - это взаимодействие радикалов и ионов между собой и с окружающими молекулами. На этой стадии формируются структурные повреждения различного типа, приводящие к изменению биологических свойств: нарушаются структура и функции мембран; возникают поражения в молекулах ДНК и РНК.

Длительность химической стадии 10 -6 -10 -3 с.

4. Биологическая стадия. На этой стадии повреждения молекул и субклеточных структур приводят к разнообразным функциональным нарушениям, к преждевременной гибели клетки в результате действия механизмов апоптоза или вследствие некроза. Повреждения, полученные на биологической стадии, могут передаваться по наследству.

Продолжительность биологической стадии от нескольких минут до десятков лет.

Отметим общие закономерности биологической стадии:

Большие нарушения при малой поглощенной энергии (смертельная для человека доза облучения вызывает нагрев тела всего на 0,001°С);

Действие на последующие поколения через наследственный аппарат клетки;

Характерен скрытый, латентный период;

Разные части клеток обладают различной чувствительностью к излучению;

Прежде всего поражаются делящиеся клетки, что особенно опасно для детского организма;

Губительное действие на ткани взрослого организма, в которых есть деление;

Сходство лучевых изменений с процессами патологии раннего старения.

33.8. Основные понятия и формулы

Продолжение таблицы

33.9. Задачи

1. Какова активность препарата, если в течение 10 мин распадается 10 000 ядер этого вещества?

4. Возраст древних образцов дерева можно приближенно определить по удельной массовой активности изотопа 14 6 C в них. Сколько лет тому назад было срублено дерево, которое пошло на изготовление предмета, если удельная массовая активность углерода в нем составляет 75 % от удельной массы активности растущего дерева? Период полураспада радона Т = 5570 лет.

9. После Чернобыльской аварии в некоторых местах загрязненность почвы радиоактивным цезием-137 была на уровне 45 Ки/км 2 .

Через сколько лет активность в этих местах снизится до относительно безопасного уровня 5 Ки/км 2 . Период полураспада цезия-137 равен Т = 30 лет.

10. Допустимая активность йода-131 в щитовидной железе человека должна быть не более 5 нКи. У некоторых людей, находившихся в зоне Чернобыльской катастрофы, активность йода-131 доходила до 800 нКи. Через сколько дней активность снижалась до нормы? Период полураспада йода-131 равен 8 суткам.

11. Для определения объема крови у животного используется следующий метод. У животного берут небольшой объем крови, отделяют эритроциты от плазмы и помещают их в раствор с радиоактивным фосфором, который ассимилируется эритроцитами. Меченые эритроциты снова вводят в кровеносную систему животного, и через некоторое время определяют активность пробы крови.

В кровь некоторого животного ввели ΔV = 1 мл такого раствора. Начальная активность этого объема была равна А 0 = 7000 Бк. Активность 1 мл крови, взятой из вены животного через сутки, оказалась равной 38 импульсов в минуту. Определить объем крови животного, если период полураспада радиоактивного фосфора равен Т = 14,3 суток.