Самый мощный разряд — у электрического угря. Электрический угорь — опасное чудо природы Угри не используют электричество для освещения

Угри электрические (Electrophorus electricus) являются самыми опасными среди всех существующих в природе электрических рыб. Если взять во внимание человеческие жертвы, то они опережают даже пираний. Эти существа могут наносить мощные повторяющиеся электрические удары, вследствие которых развивается сердечная или дыхательная недостаточность. Так что человеку лучше держаться подальше от этих удивительных и опасных созданий природы. Исходя из этого, не рекомендуется держать их в домашних аквариумах. Это очень опасная рыба!

Электрический угорь: описание

Электрический угорь внешне очень напоминает змею. У него такая же скользкая кожа, длинное цилиндрическое тело и сплюснутая голова с широким квадратным ртом. Рыба не имеет спинного плавника, отлично плавать ей помогает длинный анальный плавник.

В естественной среде угри электрические могут вырастать до трех метров в длину при весе в сорок килограмм. В условиях аквариума рыбы данного вида не превышают одного с половиной метра в длину. Самки заметно больше самцов.

Сверху окрас угря темно-зеленый или сероватый. Брюшко электрической рыбки с желтоватым или оранжевым оттенком. Молодые угри оливково-коричневого цвета с желтыми пятнами.

В передней части находятся все жизненно важные органы, которые занимают всего лишь 20% всего тела, остальная часть - это сплошной электрический орган, который состоит из тысячи элементов, воспроизводящих электричество. Развивается этот орган сразу же после рождения. Если дотронуться рукой до двухсантиметрового малька, то уже можно ощутить легкое покалывание током. Когда малыш вырастет до 40 мм, то мощность сильно увеличится.

Электрические органы

Положительный заряд угря находится в передней части тела, отрицательный, соответственно, в задней. Кроме того, рыба имеет дополнительный электрический орган, играющий роль локатора. Именно три электрических органа отличают это создание от остальных животных. Они связаны друг с другом, эта особенность способствует тому, что даже самый маленький разряд электрического угря является мощным, так как заряд суммируется. В итоге он становится настолько сильным, что способен привести к смерти того, кто с ним столкнется.

Благодаря электрическим органам угорь как радаром находит свою добычу. Кроме этого, они также используются для общения друг с другом. Особенно во время периода размножения, когда самец издает громкие частые сигналы, а самка отвечает более длительными.

Когда угорь находится в спокойном положении и отдыхает, электричество от него не исходит, но когда он ведет активный образ жизни, то вокруг образуется электрическое поле.

Места обитания в естественной среде

Угри электрические часто встречаются в Гвиане, но в основном в естественной среде обитают в южноамериканском регионе в бассейнах рек Амазонки и Ориноко. Удивительные создания любят теплые воды и предпочитают свежие мутные водоемы. Лучшие места для электрических рыб - это заливы, плоскодонья, болота и поймы.

Образ жизни

Угри электрические по сей день остаются не до конца изученными. Например, продолжительность их жизни в дикой природе так и не установлена. При аквариумном содержании самка может жить от 10 до 22 лет, самец способен прожить при таких же условиях содержания от 10 до 15 лет.

Как уже говорилось ранее, отличительной чертой угрей являются электрические органы. Кроме того, у них имеется еще одна удивительная особенность - они дышат воздухом. Это для них необходимо, так как дыхательный механизм электрических гигантов очень сложный и устроен так, что рыбам нужно регулярно выплывать на поверхность водоема и вдыхать воздух. Благодаря такой особенности угри могут находиться вне водоема по нескольку часов.

Зрением рыбы, похожие на гигантских змей, похвастаться не могут, и ведут себя активно по большей части в ночное время.

Угри электрические плотоядны, вегетарианцами их назвать точно нельзя. В их рацион входят рыбы, маленькие пернатые, земноводные. Иногда эти монстры водоемов могут закусить небольшим млекопитающим. Так что их можно смело отнести к разряду хищников.

Размножение

Удивительные подробности об этих необычных созданиях еще не все перечислены. Угри электрические размножаются очень интересным способом. Самец, используя свою слюну, строит гнездо, в которое самка откладывает яйца. Просто потрясающе, что всего из одной такой кладки появляются на свет около семнадцати тысяч маленьких электрических угрей.

Новорожденные малыши сразу же поедают те яйца, которые их мама кладет после своих первенцев. Детки электрического угря остаются рядом с родительницей до тех пор, пока у них не разовьются органы ориентации.

На что ловить электрического угря?

Угорь, хоть и электрический, но все же считается рыбой, а это значит, что его можно ловить, как и всякую другую, отправившись на рыбалку. Но не так все просто - эти создания смертельно опасны, поэтому рыболовы не горят желанием иметь такой улов, несмотря на то, что мясо угрей считается деликатесом.

В тех районах, где в водоемах водятся электрические угри, местные жители придумали простой способ ловли этих опасных рыб. Если спросите, на что ловить угрей при методе, придуманном аборигенами, то ответ будет очень необычный - ловят их на коров! Все дело в том, что коровы нужны для того, чтобы взять на себя первые мощные разряды электричества. Рыбаки подметили, что коровы, в отличие от всех остальных живых существ, очень легко переносят удары током от змееподобных рыб, поэтому домашний скот просто загоняют в реку с угрями и ждут, пока буренки перестанут мычать и метаться в воде.

Спокойствие стада - сигнал к тому, что пора их выгонять на берег и обычными сетями вылавливать из реки угрей, которые на то время становятся совершенно безопасными. Ведь эти монстры не могут долго излучать ток, каждый последующий разряд слабее предыдущего. Для того чтобы восстановить мощность ударов, рыбам потребуется время. Вот такая нетрадиционная рыбалка, но ведь и улов очень даже необычный!

Расскажите об электрических рыбах. Какой величины ток они вырабатывают?

Электрический сом.

Электрический угорь.

Электрический скат.

В. Кумушкин (г. Петрозаводск).

Среди электрических рыб первенство принадлежит электрическому угрю, живущему в притоках Амазонки и других реках Южной Америки. Взрослые особи угря достигают двух с половиной метров. Электрические органы - преобразованные мышцы - располагаются у угря по бокам, простираясь вдоль позвоночника на 80 процентов всей длины рыбы. Это своеобразная батарея, плюс которой находится в передней части тела, а минус - в задней. Живая батарея вырабатывает напряжение около 350, а у самых крупных особей - до 650 вольт. При мгновенной силе тока до 1-2 ампер такой разряд способен свалить с ног человека. С помощью электрических разрядов угорь защищается от врагов и добывает себе пропитание.

В реках Экваториальной Африки обитает другая рыба - электрический сом. Размеры его поменьше - от 60 до 100 см. Специальные железы, вырабатывающие электричество, составляют около 25 процентов общего веса рыбы. Электрический ток достигает напряжения 360 вольт. Известны случаи электрического шока у людей, купавшихся в реке и нечаянно наступивших на такого сома. Если электрический сом попадается на удочку, то и рыболов может получить весьма ощутимый удар током, прошедшим по мокрым леске и удилищу к его руке.

Однако умело направленные электрические разряды можно использовать в лечебных целях. Известно, что электрический сом занимал почетное место в арсенале народной медицины у древних египтян.

Вырабатывать весьма значительную электрическую энергию способны и электрические скаты. Их насчитывается более 30 видов. Эти малоподвижные обитатели дна, размером от 15 до 180 см, распространены главным образом в прибрежной зоне тропических и субтропических вод всех океанов. Затаившись на дне, иногда наполовину погрузившись в песок или ил, они парализуют свою добычу (других рыб) разрядом тока, напряжение которого у разных видов скатов бывает от 8 до 220 вольт. Скат может нанести значительный удар током и человеку, случайно соприкоснувшемуся с ним.

Помимо электрических зарядов большой силы рыбы способны вырабатывать и низковольтный, слабый по силе ток. Благодаря ритмическим разрядам слабого тока с частотой от 1 до 2000 импульсов в секунду, они даже в мутной воде превосходно ориентируются и сигнализируют друг другу о возникающей опасности. Таковы мормирусы и гимнархи, обитающие в мутных водах рек, озер и болот Африки.

Вообще же, как показали экспериментальные исследования, практически все рыбы, и морские, и пресноводные, способны излучать очень слабые электрические разряды, которые можно уловить лишь с помощью специальных приборов. Эти разряды играют важную роль в поведенческих реакциях рыб, особенно тех, которые постоянно держатся большими стаями.

Люди узнали про электрических рыб довольно давно: ещё в Древнем Египте для лечения эпилепсии использовали электрического ската, анатомия электрического угря подсказала Алессандро Вольте идею его знаменитых батарей, а Майкл Фарадей, «отец электричества», использовал того же угря в качестве научного оборудования. Современные биологи знают, что можно ждать от таких рыб (почти двухметровый угорь может сгенерировать 600 вольт), кроме того, более-менее известно, что за гены формируют такой необычный признак - нынешним летом группа генетиков из Университета Висконсина в Мадисоне (США) опубликовала работу с полным сиквенсом генома электрического угря. Предназначение «электроспособностей» тоже понятно: они нужны для охоты, для ориентации в пространстве и для защиты от других хищников. Неизвестным оставалось лишь одно - как именно рыбы пользуются своим электрошоком, что за стратегию используют.

Для начала немного о самом главном герое.

В таинственных и мутных водах Амазонки скрывается множество опасностей. Одну из них представляет электрический угорь (лат. Electrophorus electricus ) — единственный представитель отряда электрических угрей. Он водится на северо-востоке Южной Америки и встречается в небольших притоках среднего, а также нижнего течения мощной реки Амазонки.

Средняя длина взрослого электрического угря метр-полтора, хотя иногда встречаются и трехметровые экземпляры. Весит такая рыбка порядка 40 кг. Тело у нее удлиненное и немного сплющенное с боков. Собственно, на рыбу этот угорь не очень-то и похож: чешуи нет, из плавников только хвостовой да грудные, и плюс ко всему дышит он атмосферным воздухом.

Дело в том, что притоки, где обитает электрический угорь, слишком мелкие и мутные, а вода в них практически лишена кислорода. Поэтому природа наградила животное уникальными сосудистыми тканями в ротовой полости, с помощью которых угорь усваивает кислород прямо из наружного воздуха. Правда для этого ему приходится каждые 15 минут подниматься на поверхность. Зато если угорь вдруг окажется вне воды, он сможет прожить несколько часов, при условии, что его тело и рот не пересохнут.

Окрас у электрического угля оливково-коричневый, что позволяет ему оставаться незамеченным для потенциальной добычи. Только горло и нижняя часть головы ярко-оранжевые, но вряд ли это обстоятельство поможет несчастным жертвам электрического угря. Стоит ему содрогнуться всем своим скользким телом, как образуется разряд, напряжением до 650В (в основном 300-350В), который моментально убивает всю находящуюся поблизости мелкую рыбешку. Добыча падает на дно, а хищник подбирает ее, заглатывает целиком и умащивается неподалеку, чтобы немного отдохнуть.

Электрический угорь имеет особые органы, состоящие из многочисленных электрических пластинок — видоизмененных мышечных клеток, между мембранами которых образуется разность потенциалов. Органы занимают две трети массы тела этой рыбы.

Впрочем, электрический угорь может генерировать разряды и с меньшим напряжением — до 10 вольт. Поскольку у него плохое зрение, он использует их как радар, для навигации и поиска добычи.

Электрические угри могут быть огромных размеров, достигая 2, 5 метра в длину и 20 килограммов в весе. Они обитают в реках Южной Америки, например, в Амазонке и Ориноко. Там питаются рыбой, земноводными, птицами и даже мелкими млекопитающими.

Поскольку электрический угорь усваивает кислород непосредственно из атмосферного воздуха, ему приходится очень часто подниматься к поверхности воды. Он должен это делать, по крайней мере, один раз в пятнадцать минут, но обычно это происходит чаще.

На сегодняшний день известно мало случаев гибели людей после встречи с электрическим угрем. Тем не менее многочисленные электрические удары могут привести к дыхательной или сердечной недостаточности, из-за чего человек может утонуть даже на мелководье.

Все его тело покрывают специальные органы, которые состоят из особых клеток. Эти клетки последовательно соединены между собой при помощи нервных каналов. В передней части тела «плюс», в задней «минус». Слабое электричество образуется в самом начале и, проходя последовательно от органа к органу, оно набирает силу, чтобы ударить как можно более эффективно.

Сам электрический угорь считает, что наделен надежной защитой, поэтому не спешит сдаваться даже более крупному противнику. Бывали случаи, когда угри не пасовали даже перед крокодилами, а уж людям и вовсе стоит избегать встреч с ними. Конечно, вряд ли разряд убьет взрослого человека, однако ощущения от него будут более чем неприятные. К тому же есть риск потери сознания, а если при этом находиться в воде, можно запросто утонуть.

Электрический угорь весьма агрессивен, нападает он сразу и не собирается никого предупреждать о своих намерениях. Безопасное расстояние от метрового угря составляет не меньше трех метров — этого должно хватить, чтобы избежать опасного тока.

Кроме основных органов, вырабатывающих электричество, есть у угря и еще один, при помощи которого он разведывает окружающую обстановку. Этот своеобразный локатор испускает низкочастотные волны, которые, возвращаясь, оповещают своего хозяина о находящихся впереди преградах или наличии подходящей живности.

Зоолог Кеннет Катания (Kenneth Catania) из Университета Вандербильта (США), наблюдая за электрическими угрями, которые жили в специально оборудованном аквариуме, заметил, что рыбы могут разряжать свою батарею тремя разными способами. Первый - это низковольтные импульсы, предназначенные для ориентации на местности, второй - последовательность двух-трёх высоковольтных импульсов, длящихся несколько миллисекунд, наконец, третий способ - относительно долгий залп высоковольтных и высокочастотных разрядов.

Когда угорь нападает, он посылает добыче много вольт на высокой частоте (способ номер три). Трёх-четырёх миллисекунд такой обработки хватает, чтобы обездвижить жертву - то есть можно сказать, что угорь использует дистанционный электрошок. Причём частота его намного превышает искусственные приспособления: например, дистанционный шокер Тайзер подаёт 19 импульсов в секунду, тогда как угорь - целых 400. Парализовав жертву, он должен, не теряя времени, быстро схватить её, иначе добыча придёт в себя и уплывёт.

В статье в Science Кеннет Катания пишет, что «живой электрошокер» действует так же, как искусственный аналог, вызывая сильное непроизвольное сокращение мышц. Механизм действия удалось определить в своеобразном опыте, когда в аквариум к угрю клали рыбу с разрушенным спинным мозгом; между собой их разделял электропроницаемый барьер. Контролировать мышцы рыба не могла, однако они сокращались сами в ответ на электроимпульсы извне. (Угря провоцировали на разряд, подкидывая ему червей в качестве корма.) Если же рыбе с разрушенным спинным мозгом вводили ещё и нервнопаралитический яд кураре, то электричество от угря никак на неё действовало. То есть мишенью электроразрядов были именно моторные нейроны, управляющие мышцами.

Однако всё это происходит, когда угорь уже определил себе добычу. А если добыча затаилась? По движению воды её тогда уже не найдёшь. К тому же сам угорь охотится ночью, и при том не может похвастаться хорошим зрением. Чтобы найти добычу, он использует разряды второго рода: короткие последовательности из двух-трёх высоковольтных импульсов. Такой разряд имитирует сигнал моторных нейронов, побуждая сокращаться все мышцы потенциальной жертвы. Угорь как бы приказывает ей обнаружить себя: по телу жертвы проходит мышечный спазм, она начинает дёргаться, а угорь ловит колебания воды - и понимает, где спряталась добыча. В похожем опыте с рыбой с разрушенным спинным мозгом её отделяли от угря уже электронепроницаемым барьером, однако волны воды от неё угорь мог чувствовать. Одновременно рыбу соединяли со стимулятором, так что её мышцы сокращались по желанию экспериментатора. Оказалось, что если угорь испускал короткие «импульсы обнаружения», и одновременно рыбу заставляли дёргаться, то угорь нападал на неё. Если же рыба никак не отвечала, то угорь на неё, естественно, никак не реагировал - он просто не знал, где она находится.

Доминик Стэтхем

Фото ©depositphotos.com/Yourth2007

Electrophorus electricus ) обитает в темных водах болот и рек в северной части Южной Америки. Это таинственный хищник, обладающий сложной системой электролокации и способный перемещаться и охотиться в условиях низкой видимости. Используя «электрорецепторы» для определения искажений электрического поля, вызванных его собственным телом, он способен обнаруживать потенциальную жертву, сам при этом оставаясь незамеченным. Он обездвиживает жертву с помощью сильнейшего электрического шока, достаточно сильного, чтобы оглушить такое крупное млекопитающее, как лошадь, или даже убить человека. Своей удлиненной округлой формой тела угорь напоминает рыбу, которую мы обычно называем муреной (порядок Anguilliformes); однако принадлежит к другому порядку рыб (Gymnotiformes).

Рыб, способных обнаруживать электрические поля, называют электрорецептивными , а способных генерировать мощное электрическое поле, таких как электрический угорь, называют электрогенными .

Как электрический угорь генерирует такое высокое электрическое напряжение?

Электрические рыбы – не единственные, кто способен генерировать электричество. Фактически все живые организмы делают это в той или иной мере. Мышцы нашего тела, к примеру, управляются мозгом с помощью электрических сигналов. Электроны, вырабатываемые бактериями, могут быть использованы для выработки электричества в топливных клетках, которые называются электроцитами. (см. таблицу ниже). И хотя каждая из клеток несет незначительный заряд, благодаря тому, что тысячи таких клеток собираются в серии, подобно батарейкам в фонарике, может быть выработано напряжение до 650 вольт (V). Если организовать эти ряды в параллели, можно получить электрический ток силой в 1Ампер (A), что дает электрический удар силой в 650 ватт (W; 1 W = 1 V × 1 A).

Каким образом угрю удается не оглушать самого себя электрическим током?

Фото:CC-BY-SA Steven Walling via Wikipedia

Ученые не знают точно, как ответить на этот вопрос, но результаты некоторых интересных наблюдений могут пролить свет на данную проблему. Во-первых, жизненно важные органы угря (например, мозг и сердце) расположены возле головы, вдалеке от органов, вырабатывающих электричество, и окружены жировой тканью, которая может действовать в виде изоляции. Кожа также имеет изолирующие свойства, поскольку, согласно результатам наблюдений, угри с поврежденной кожей более подвержены самооглушению электрическим ударом.

Во-вторых, наиболее сильные электрические удары угри способны наносить в момент спаривания, не нанося при этом вреда партнеру. Однако если удар такой же силы нанести другому угрю не во время спаривания, это может его убить. Это предполагает, что у угрей существует некая система защиты, которую можно включать и отключать.

Мог ли электрический угорь возникнуть в результате эволюции?

Очень трудно представить себе, как это могло бы произойти в ходе незначительных изменений, как того требует процесс, предложенный Дарвиным. В случае, если ударная волна была важной с самого начала, то вместо того, чтобы оглушить, она предупреждала бы жертву об опасности. Более того, чтобы в ходе эволюции выработать способность оглушать жертву, электрическому угрю пришлось бы одновременно вырабатывать и систему самозащиты. Каждый раз, когда возникала мутация, увеличивающая силу электрического удара, должна была возникать и другая мутация, улучшающая электроизоляцию угря. Кажется маловероятным то, что одной мутации было бы достаточно. К примеру, для того, чтобы передвинуть органы ближе к голове, понадобилось бы целая серия мутаций, которые должны были возникнуть одновременно.

Хотя немногие рыбы способны оглушать свою добычу, существует множество видов, использующих электричество низкого напряжения для навигации и общения. Электрические угри относятся к группе южно-американских рыб, известных под названием «ножетелки» (семейство Mormyridae), которые тоже используют электролокацию и, как считается, развили эту способность наряду со своими южно-американскими собратьями . Более того, эволюционисты вынуждены заявлять, что электрические органы у рыб эволюционировали независимо друг от друга восемь раз . Если учесть сложность их строения, поражает уже то, что эти системы могли развиться в ходе эволюции хотя бы один раз, не говоря уже о восьми.

Ножетелки из Южной Америки и химеровые из Африки используют свои электрические органы для определения местонахождения и коммуникации, и используют ряд различных видов электрорецепторов. В обеих группах есть виды, продуцирующие электрические поля разных сложных форм волны. Два вида ножетелок, Brachyhypopomus benetti и Brachyhypopomus walteri настолько похожи друг на друга, что их можно было бы отнести к одному виду, однако первый из них вырабатывает ток постоянного напряжения, а второй – ток переменного напряжения. Эволюционная история становится еще более примечательной, если копнуть еще глубже. Для того, чтобы их аппараты электролокации не мешали друг другу и не создавали помех, некоторые виды используют специальную систему, с помощью которой каждая из рыб меняет частоту электрического разряда. Примечательно, что эта система работает практически так же (используется такой же вычислительный алгоритм), как у стеклянной ножетелки из Южной Америки (Eigenmannia ) и африканской рыбы аба-аба (Gymnarchus ). Могла ли такая система устранения помех независимо развиться в ходе эволюции у двух отдельных групп рыб, обитающих на разных континентах?

Шедевр Божьего творения

Энергетический агрегат электрического угря затмил все творения человека своей компактностью гибкостью, мобильностью, экологической безопасностью и способностью к самовосстановлению. Все части этого аппарата идеальным образом интегрированы в лощеное тело, что дает угрю возможность плыть с большой скорость и проворством. Все детали его строения – от крохотных клеток, вырабатывающих электричество, до сложнейшего вычислительного комплекса, анализирующего искажения производимых угрем электрических полей, - указывают на замысел великого Создателя.

Как электрический угорь генерирует электричество? (научно-популярная статья)

Электрические рыбы генерируют электричество подобно тому, как это делают нервы и мышцы в нашем теле. Внутри клеток-электроцитов особые энзимные протеины под названием Na-K ATФаза выкачивают натриевые ионы через клеточную мембрану, и всасывают ионы калия. (‘Na’ – химический символ натрия, а ‘K’ – химический символ калия». ‘ATФ’ – аденозинтрифосфат – энергетическая молекула, используемая для работы насоса). Дисбаланс между ионами калия внутри и снаружи клетки приводит к возникновению химического градиента, который снова выталкивает ионы калия из клетки. Подобным образом, дисбаланс между ионами натрия порождает химический градиент, который затягивает ионы натрия обратно в клетку. Другие протеины, встроенные в мембрану, действуют в виде каналов для ионов калия, пор, позволяющих ионам калия покинуть клетку. По мере того, как ионы калия с позитивным зарядом накапливаются снаружи клетки, вокруг клеточной мембраны нарастает электрический градиент, при чем наружная часть клетки имеет более позитивный заряд, чем ее внутренняя часть. Насосы Na-K ATФазы (натрий-калиевой аденозинтрифосфатазы) построены таким образом, что они выбирают лишь один позитивно заряженный ион, иначе негативно заряженные ионы также стали бы перетекать, нейтрализуя заряд.

Большая часть тела электрического угря состоит из электрических органов. Главный орган и орган Хантера отвечают за выработку и накопление электрического заряда. Орган Сакса вырабатывает электрическое поле низкого напряжения, которое используется для электролокации.

Химический градиент действует таким образом, что выталкивает ионы калия, а электрический градиент втягивает их обратно. В момент наступления баланса, когда химические и электрические силы упраздняют друг друга, снаружи клетки будет находиться примерно на 70 милливольт больше позитивного заряда, чем внутри. Таким образом, внутри клетки оказывается негативный заряд в -70 милливольт.

Однако большее количество протеинов, встроенных в клеточную мембрану, обеспечивают каналы для ионов натрия – это поры, которые позволяют ионам натрия снова попадать в клетку. В обычном состоянии эти поры перекрыты, однако когда электрические органы активируются, поры раскрываются, и ионы натрия с позитивным зарядом снова поступают в клетку под воздействием градиента химического потенциала. В данном случае баланс достигается, когда внутри клетки собирается позитивный заряд до 60 милливольт. Происходит общее изменение напряжения от -70 до +60 милливольт, и это составляет 130 mV или 0.13 V. Этот разряд происходит очень быстро, примерно за одну миллисекунду. И поскольку в серии клеток собрано примерно 5000 электроцитов, благодаря синхронному разряду всех клеток может вырабатываться до 650 вольт (5000 × 0.13 V = 650).

Насос Na-K ATФазы (натрий-калиевой аденазинтрифосфотазы). За каждый цикл два иона калия (K +) поступают в клетку, а три иона натрия (Na +) выходят из клетки. Этот процесс приводится в движение энергией АТФ молекул.

Глоссарий

Атом или молекула, несущий электрический заряд благодаря неравному количеству электронов и протонов. Ион будет иметь негативный заряд, если в нем содержится больше электронов, чем протонов, и позитивный заряд – если в нем содержится больше протонов, нежели электронов. Ионы калия (K +) и натрия (Na +) имеют позитивный заряд.

Градиент

Изменение какой-либо величины при перемещении от одной точки пространства к другой. Например, если вы отходите от костра, температура понижается. Таким образом, костер генерирует температурный градиент, уменьшающийся с расстоянием.

Электрический градиент

Градиент изменения величины электрического заряда. Например, если снаружи клетки содержится большее количество позитивно заряженных ионов, чем внутри клетки, электрический градиент будет проходить через клеточную мембрану. Благодаря тому, что одинаковые заряды отталкиваются друг от друга, ионы будут двигаться таким образом, чтобы сбалансировать заряд внутри и снаружи клетки. Передвижения ионов из-за электрического градиента происходят пассивно, под воздействием электрической потенциальной энергии, а не активно, под воздействием энергии, поступающей из внешнего источника, например из АТФ-молекулы.

Химический градиент

Градиент химической концентрации. Например, если снаружи клетки содержится большее количество ионов натрия, чем внутри клетки, то химический градиент натриевого иона будет проходить через клеточную мембрану. Из-за произвольного движения ионов и столкновений между ними существует тенденция, что ионы натрия будут двигаться от более высоких концентраций к более низким концентрациям до тех пор, пока не будет установлен баланс, то есть пока по обе стороны мембраны не окажется одинаковое количество ионов натрия. Это происходит пассивно, в результате диффузии. Движения обусловлены кинетической энергией ионов, а не энергией, получаемой из внешнего источника, такого как АТФ молекула.

Основные данные об электрическом угре :

Длина: до 2,4 м.

Масса: 45 кг.

Родственные виды. Семья угревых включает 16 видов, одним из них является европейский угорь .

Окраска угря - маслиново-оранжевое, тело в длину достигает двух метров, голова широкая и плоская. Электрические органы угря расположены в хвосте, длина которого составляет три четверти всей длины тела.

Образ жизни электрического угря

Привычки: одиночка.

Пища: мелкая рыба, лягушки, молодые особи едят также беспозвоночных.

Продолжительность жизни: точно неизвестно, сколько лет живет электрический угорь. Старейший речной угорь был в возрасте 88 лет, примерно столько живет и электрический угорь.

В мутных водах, где обитает угорь, видимость недостаточная, поэтому он редко полагается на зрение (зрение у угря очень плохой). Точную информацию об окружающем мире угорь получает с помощью своих электрических органов.

Молодые электрические угри ловят беспозвоночных, обитающих на дне. Рыба находит добычу с помощью электрических органов, которые позволяют ей обнаружить жертву, даже если она неподвижна.

Чувствительные сенсоры фиксируют и небольшие электрические импульсы, что является вызванные движением мышц других рыб, например, во время дыхания последних.

Как только угорь обнаруживает свою добычу, он сразу же посылает серию электрических разрядов, которые парализуют или даже убивают жертву. Угорь ест только один ряд мелких зубов, поэтому ученые делают предположение, что добычу он глотает целиком.

Размножение электрического угря

О размножении электрического угря почти ничего неизвестно. Предполагают, что мальки появляются из икры. О размножении электриче

Вполне возможно, что, как и другие виды рыб , способных вырабатывать электрическое поле, угри используют электрические органы для обмена информацией о принадлежности к определенному полу, о возрасте и готовности к спариванию.

В определенное время угри внезапно исчезают и затем возвращаются в сопровождении молодых рыб длиной около 10 см. Предполагают, что мальки появляются из икры, но эта версия и по сей день не доказана.

Электрический угорь - это самая опасная из всех электрических рыб. Другие электрические рыбы, например, скат или сом , могут вызвать электрический разряд силой от пяти до двухсот вольт.

Электрические органы. Органы, которые производят электроэнергию, находятся в задней части тела угря. Они состоят из пучка очень тонких электрических пластинок (ЭП), которых насчитывается около 10 тысяч. Каждая из них производит слабое электрическое поле. Когда угорь их активизирует, ЭП производят короткие электрические импульсы. При низком напряжении электроволны используются как радар. Когда приближается какая-то рыба, угорь усиливает интенсивность разряда и парализует добычу.

Места проживания. Родина угря - Южная Америка. Живет в реках Гайаны, в дельте Ориноко и Амазонки.
Сохранение. В Южной Америке его мясо употребляется в пищу, но в других регионах его для этих целей не используют. Существованию угря грозит только загрязнения вод.


Если Вам понравился наш сайт расскажите о нас своим друзьям!