Все об атмосферном воздухе.

Оговоримся сразу, азот в воздухе занимает большую часть, однако и химический состав оставшейся доли весьма интересен и разнообразен. Если коротко, то список основных элементов выглядит следующим образом.

Однако дадим и небольшие пояснения по функциям этих химических элементов.

1. Азот

Содержание азота в воздухе – 78% по объему и 75% по массе, то есть этот элемент доминирует в атмосфере, имеет звание одного из самых распространенных на Земле, и, кроме того, содержится и за пределами зоны обитания человека – на Уране, Нептуне и в межзвездных пространствах. Итак, сколько азота в воздухе, мы уже разобрались, остался вопрос о его функции. Азот необходим для существования живых существ, он входит в состав:

  • белков;
  • аминокислот;
  • нуклеиновых кислот;
  • хлорофилла;
  • гемоглобина и др.

В среднем около 2% живой клетки составляют как раз атомы азота, что объясняет, зачем столько азота в воздухе в процентах объема и массы.
Азот также является одним из инертных газов, добываемых из атмосферного воздуха. Из него синтезируют аммиак, используют для охлаждения и в других целях.

2. Кислород

Содержание кислорода в воздухе – один из самых популярных вопросов. Сохраняя интригу, отвлечемся на один забавный факт: кислород открыли дважды – в 1771 и 1774 годах, однако из-за разницы в публикациях открытия, почести открытия элемента достались английскому химику Джозефу Пристли, который фактически выделил кислород вторым. Итак, доля кислорода в воздухе колеблется около 21% по объему и 23% по массе. Вместе с азотом эти два газа образуют 99% всего земного воздуха. Однако процент кислорода в воздухе меньше, чем азота, и при этом мы не испытываем проблем с дыханием. Дело в том, что количество кислорода в воздухе оптимально рассчитано именно для нормального дыхания, в чистом виде этот газ действует на организм подобно яду, приводит к затруднениям в работе нервной системы, сбоям дыхания и кровообращения. При этом недостаток кислорода также негативно сказывается на здоровье, вызывая кислородное голодание и все связанные с ним неприятные симптомы. Поэтому сколько кислорода в воздухе содержится, столько и нужно для здорового полноценного дыхания.

3. Аргон

Аргон в воздухе занимает третье место, он не имеет запаха, цвета и вкуса. Значимой биологической роли этого газа не выявлено, однако он обладает наркотическим эффектом и даже считается допингом. Добытый из атмосферы аргон используют в промышленности, медицине, для создания искусственной атмосферы, химического синтеза, пожаротушения, создания лазеров и пр.

4. Углекислый газ

Углекислый газ составляет атмосферу Венеры и Марса, его процент в земном воздухе куда ниже. При этом огромное количество углекислоты содержится в океане, он регулярно поставляется всеми дышащими организмами, выбрасывается за счет работы промышленности. В жизни человека углекислый газ используется в пожаротушении, пищевой промышленности как газ и как пищевая добавка Е290 – консервант и разрыхлитель. В твердом виде углекислота – один из самых известных хладагентов «сухой лед».

5. Неон

Тот самый загадочный свет дискотечных фонарей, яркие вывески и современные фары используют пятый по распространенности химический элемент, который также вдыхает человек – неон. Как и многие инертные газы, неон оказывает на человека наркотическое действие при определенном давлении, однако именно этот газ используют в подготовке водолазов и других людей, работающих при повышенном давлении. Также неоново-гелиевые смеси используются в медицине при расстройствах дыхания, сам неон используют для охлаждения, в производстве сигнальных огней и тех самых неоновых ламп. Однако, вопреки стереотипу, неоновый свет не синий, а красный. Все остальные цвета дают лампы с другими газами.

6. Метан

Метан и воздух имеют очень древнюю историю: в первичной атмосфере, еще до появления человека, метан был в куда большем количестве. Сейчас этот газ, добываемый и используемый как топливо и сырье в производстве, не так широко распространен в атмосфере, но по-прежнему выделяется из Земли. Современные исследования устанавливают роль метана в дыхании и жизнедеятельности организма человека, однако авторитетных данных на этот счет пока нет.

7. Гелий

Посмотрев, сколько гелия в воздухе, любой поймет, что этот газ не относится к числу первостепенных по важности. Действительно, сложно определить биологическое значение этого газа. Не считая забавного искажения голоса при вдыхании гелия из шарика 🙂 Однако гелий широко применяется в промышленности: в металлургии, пищевой промышленности, для наполнения воздухоплавающих судов и метеорологических зондов, в лазерах, ядерных реакторах и т.д.

8. Криптон

Речь не идет о родине Супермена 🙂 Криптон – инертный газ, который в три раза тяжелее воздуха, химически инертен, добывается из воздуха, используется в лампах накаливания, лазерах и все еще активно изучается. Из интересных свойств криптона стоит отметить, что при давлении в 3,5 атмосферы он оказывает наркотический эффект на человека, а при 6 атмосферах приобретает резкий запах.

9. Водород

Водород в воздухе занимает 0,00005% по объему и 0,00008% по массе, но при этом именно он – самый распространенный элемент во Вселенной. О его истории, производстве и применении вполне можно написать отдельную статью, поэтому сейчас ограничимся небольшим списком отраслей: химическая, топливная, пищевая промышленности, авиация, метеорология, электроэнергетика.

10. Ксенон

Последний в составе воздуха, изначально и вовсе считавшийся только примесью к криптону. Его название переводится как «чужой», а процент содержания и на Земле, и за ее пределами минимальный, что обусловило его высокую стоимость. Сейчас без ксенона не обходятся: производство мощных и импульсных источников света, диагностика и наркоз в медицине, двигатели космических аппаратов, ракетное топливо. Кроме того, при вдыхании ксенон значительно понижает голос (обратный эффект гелию), а с недавнего времени вдыхание этого газа причислено к списку допингов.

Уже многие миллиарды лет наша Земля, окружённая слоем воздуха, совершает свой бесконечный бег вокруг Солнца.

Этот слой воздуха называется атмосферой. Его толщина достигает 300 км. Атмосфера как прозрачное, невидимое покрывало, окутывает нашу Землю. А что такое воздух, каковы его свойства и роль в жизни на Земле?

Где находится воздух и зачем он нам нужен

Воздух заполняет все свободные места, и даже самые маленькие щели.

Прозрачный стакан только кажется пустым. Попробуйте, медленно наклоняя его, погружать в воду. По мере заполнения стакана водой, из него крупными пузырями будет выходить воздух.

Какова же роль воздуха в жизни на нашей планете:

  • Без воздуха жизнь на Земле была бы невозможна. Без пищи человек может продержаться несколько недель, без воды – несколько дней, а без воздуха всего несколько минут. Попробуйте перестать дышать на какое-то время. Уже через несколько секунд вы почувствуете, как нуждаетесь в глубоком вдохе. Точно также воздух необходим и животным.
  • А ещё воздух помогает нам общаться. Издаваемые звуки приводят в колебание воздух. Рождающиеся звуковые волны заставляют колебаться барабанную перепонку в ушах. Колебания передаются в головной мозг, который воспринимает их как звук. На Луне нет атмосферы, поэтому там царит абсолютная тишина. А общаться можно только с помощью специальных устройств или жестами.
  • В огромном воздушном океане рождаются ветры и облака, грозы и полярные сияния. Он оберегает нас от метеоритов, опасного ультрафиолетового и теплового излучения, исходящего от Солнца. Благодаря этой воздушной «шубе», не страшен Земле и космический холод.
  • Благодаря воздуху небо бороздят самолёты, вертолёты, висят громадные дирижабли. В голубом небе совершают свой полёт птичьи стаи, неподвижно парят громадные птицы - охотники. Подъёмная сила, удерживающая их в полёте, возникает за счёт обтекания воздухом изогнутых поверхностей их крыльев.

  • Рыбы, благодаря жабрам, умеют дышать воздухом, содержащимся в воде.

Воздушный океан, окружающий нашу планету, удерживается силами земного тяготения. Если бы Земля потеряла свою воздушную оболочку, то превратилась бы в безжизненную, лишенную растительности, пустыню.

Из чего состоит воздух

Только два века назад учёные узнали, что воздух - это смесь из нескольких газов: азота, кислорода и углекислого газа. Атмосфера есть и у других планет: , и у огромных планет-гигантов. Марс и Венера во многом похожи на Землю, однако жизни на них нет, поскольку другой состав атмосферы.

Наиболее важен для дыхания кислород. Без него мы не можем получить из пищи необходимую для жизни энергию. При физической работе и занятиях спортом мы дышим глубже и чаще, чтобы восполнить затрачиваемую для этой деятельности энергию.

Есть простой опыт, который позволяет получить кислород даже дома. В пробирку насыпаем обычной марганцовки (примерно 1/4). Закрепляем в вертикальном положении над огнём газовой конфорки или спиртовки. Выдерживаем 1-2 минуты и подносим к её открытому концу тлеющую лучину. Лучина ярко вспыхивает. Выделяющийся при нагревании газ поддерживает горение он и называется кислородом.

А в следующем опыте мы получим углекислый газ, который не поддерживает горение. Две свечки разной высоты устанавливаем в коробочку с раствором лимонной кислоты (уксуса). Зажигаем их. Затем в раствор аккуратно добавляем соду. Происходит достаточно бурная реакция. Свечи поочередно гаснут. Вначале маленькая, затем более высокая. Более низкая свечка погасла первой, значит, углекислый газ тяжелее кислорода и он скапливается внизу.

С поверхности всех водоёмов, почвы и растительности происходит постоянное испарение воды. Поэтому в воздухе всегда содержаться водяные пары. От их количества зависит влажность воздушных масс, формирование облаков и дождевых туч.

Каковы свойства воздуха?

Ответить на этот вопрос нам помогут следующие рассуждения:

  • Имеет ли воздух цвет? Нет, воздух прозрачен. Если бы он имел цвет, то окрашивал бы окружающие растения и предметы.
  • Почему же небо голубое? Дело в том, что солнечный свет состоит из 7 цветов как в радуге. Проходя через атмосферу, голубой цвет усиливается. Его - то мы и видим.
  • Если взять 2 резиновых шарика и надуть их (до одинаковых размеров), они примут круглую форму. Значит, давление вдуваемого воздуха передалось по всем направлениям одинаково.

  • А теперь поместите один из надутых шариков в холодильник, а другой в ведро с тёплой водой. Через 10-15 минут охлаждённый шарик уменьшится в размерах, а нагретый - увеличится. Следовательно, воздух при нагревании расширяется, а при охлаждении сжимается.
  • Если у вас дома найдется шприц без иголки, зажмите его носик пальцем, и попробуйте поршнем сжимать воздух в шприце. Объем воздуха заметно уменьшится. Отпустите поршень - объем воздуха станет прежним. Следовательно, воздух упруг.

  • В морозную погоду люди надевают шубы и тёплые пальто, а птицы взъерошивают свои перья, чтобы задержать воздух между ворсинками и перышками. Потому что воздух - плохой проводник тепла. Поэтому растения, под снежным одеялом, не замерзают даже в сильные холода.

Все эти замечательные свойства воздуха человек научился использовать в повседневной жизни. Вспомним упругие шины автомобилей и велосипеда, насосы и многие другие изобретения человечества. Воздух заставляет мчаться по волнам лёгкие яхты и огромные парусные корабли, вращает крылья ветряных мельниц, а своей заставляет подпрыгивать мяч.

Где самый чистый и полезный воздух

Для нашего дыхания нужен чистый воздух с достаточным содержанием кислорода. Но в городах, где все дороги забиты автомобилями, воздух загрязнен их выхлопными газами. Добавляют загрязнения и выбросы из заводских труб. Иногда они образуют вредный смог, который как тучи нависает над городом, мешая дышать.

Зато в лесах и парках дышится очень легко, потому что наши зелёные помощники поглощают вредный углекислый газ, а выделяют кислород. Вырабатывают кислород и морские водоросли, поэтому воздух на морском побережье так целебен.

Но сейчас люди стараются уменьшить вредные выбросы в атмосферу. Создаются автомобильные двигатели, работающие на электрической и даже солнечной энергии. Вместо дымящих труб тепловых строят атомные и солнечные электростанции.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Наша планета надежно защищена от негативного влияния из космоса удивительной оболочкой – атмосферой, без которой жизнь на Земле была бы немыслимой.


Многие знают, что без воздуха человек может прожить не более 5–9 минут, но не каждый понимает, что такое воздух и из чего состоит это жизненно важное вещество, образующее земную атмосферу. Попробуем разобраться.

Слово «воздух» произошло благодаря прибавлению приставки воз- к старославянскому слову дѹхъ, что означает «дух», «дохнуть», «дышать». Приставка воз- имеет древнерусское происхождение и отождествляется с предлогом «вверх» или существительным «подъем».

Более тысячи лет в славянском языке присутствовало древнегреческое слово аэр (ἀηρ), переводимое как «воздух». Впоследствии оно было практически забыто, хотя и сейчас встречается в некоторых топонимах – аэроплан, аэроходный, аэродинамика.

Воздух является главным условием существования всего живого . По сути, он представляет собой естественную смесь газов, принимающих непосредственное участие в круговороте веществ в природе. В своем составе воздух содержит около 21 % кислорода, который во время дыхания поступает в клетки нашего организма и способствует выделению жизненной энергии.

Еще одной важной его составляющей выступает азот, объем которого в атмосфере превышает 78 %. В небольших количествах в воздухе содержатся углекислый газ, метан, водород, аргон, неон и ряд других химических элементов, а также водяные пары, объем которых непосредственно влияет на общую атмосферную массу.

Поскольку воздух представляет собой естественную смесь газов, его масса в единице объема (плотность) может меняться в зависимости от изменений пропорций тех или иных компонентов, а также от влажности, температуры и высоты, на которой эта величина будет измеряться. Как правило, за основу берется показатель 1,225 кг⁄м3, который обычно фиксируется на уровне моря при температуре +15 °С.


При повышении столбика термометра до +35 °С масса воздуха снижается до 1,1455 кг/м3, при понижении температуры до -25 °С – возрастает до 1,4224 кг/м3. Помимо плотности, одним из физических свойств воздуха является молярная масса, т. е. отношение его плотности к количеству молей. Этот показатель остается неизменным и составляет 28,98 г/моль.

В городах (особенно в мегаполисах и промышленных центрах) вредные газы попадают в воздух при сгорании бензина, различных химических веществ, каменного угля (в тепловых ТЭЦ) и всевозможных искусственных материалов. Наибольший вред экологии городов наносят транспортные средства и деятельность предприятий, загрязняющих атмосферу посторонними примесями. Помимо азота, кислорода и углерода, в воздухе крупных населенных пунктов присутствуют окиси метана, сернистого газа и других веществ, оказывающих негативное воздействие на биосферу нашей планеты.

Сегодня во всем мире ученые и экологи прилагают все усилия для того, чтобы максимально сократить число вредных выбросов в атмосферу и предотвратить ее загрязнение. С этой целью создаются экологически чистые виды транспорта, отопительные системы, использующие в своей работе силу солнца и ветра, а также новые технологии, позволяющие обеспечить экологическую безопасность на производстве. Впрочем, каждый человек и сам может сделать немало для окружающей среды, выполняя ежедневно простые правила – не мыть автомобили в природных водоемах, не курить, тушить костры в парке после пикника и многое другое.

В большинстве современных стран температуру воздуха принято измерять в градусах по шкале Цельсия, предусматривающей 0 °С как температуру таяния льда, а +100 °С – кипения воды. В некоторых государствах применяется шкала Фаренгейта, согласно которой разница между точкой таяния льда и кипения воды делится на 180°.


Для измерения температуры чаще всего используют жидкостные или ртутные стеклянные термометры, реже – электрические и механические, а также оптические, регистрирующие градус за счет изменения спектра света, его уровня и других показателей.

Влажность воздуха определяется психрометром (гигрометром психометрическим), состоящим из сухого и влажного спиртовых термометров. Разница между их показателями определяет скорость испарения воды, а следовательно и влажность.

ВОЗДУХ
смесь газов, которая составляет атмосферу Земли, простирающуюся до высоты 1000-1200 км. До высоты ок. 11 км состав атмосферы остается неизменным. Этот слой называется тропосферой. В нем разыгрывается большинство метеорологических процессов, определяющих погоду. Здесь происходит интенсивная циркуляция воздуха, возникают ветры, бури и ураганы, велика турбулентность. В тропосфере сосредоточены почти весь находящийся в атмосфере водяной пар и почти вся воздушная пыль, а потому именно здесь по большей части происходит образование облаков. Над тропосферой, простираясь примерно на 50 км, располагается слой стратосферы. Здесь огромные потоки сравнительно спокойного воздуха циркулируют на больших расстояниях без значительных возмущений. В нижней части стратосферы образуются редкие облака, состоящие из мельчайших ледяных кристалликов. Над стратосферой до высоты ок. 80 км простирается мезосфера - слой, в котором достигается самая низкая в естественных условиях температура воздуха, составляющая примерно -110° C (160 К). Далее до высоты ок. 720 км следует слой термосферы. Здесь молекулы воздуха движутся столь быстро, что если бы плотность воздуха была такой же, как и на уровне моря (а не в миллиарды раз меньшей), то его температура была бы близка к 3000° C. Самый верхний слой атмосферы - экзосфера. В ней воздух крайне разрежен и столкновения молекул друг с другом столь редки, что большинство из них движутся по простым баллистическим траекториям, как пуля, а некоторая их часть - по эллиптическим орбитам, подобно искусственным спутникам Земли. Какая-то доля молекул, в основном водорода и гелия, достигает скоростей, при которых возможен выход за пределы действия сил земного тяготения, и рассеивается в пространстве между Землей и Луной (см. также АТМОСФЕРА). Изо всех разнообразных свойств воздуха важнее всего то, что он необходим для жизни на Земле. Существование людей и животных было бы невозможно без кислорода. Поскольку же для дыхания нужен кислород в разбавленном виде, наличие других газов в воздухе тоже имеет жизненно важное значение.
Состав. На уровне моря и в пределах тропосферы газовый состав воздуха (в об. %) таков: азот - 78,08%, кислород - 20,95%, аргон - 0,93%, углекислый газ (диоксид углерода) - 0,034%, водород - 5 x 10-5 %; кроме того, имеются "следовые" количества так называемых благородных (или инертных, редких) газов: неона - 1,8 x 10-3 %, гелия - 5,24 x 10-4 %, криптона - 1 x 10-4 % и ксенона - 8 x 10-6 %. Воздух в тропосфере содержит также переменные количества водяного пара; его влажность зависит от температурных условий и высоты. В нижних слоях атмосферы во взвешенном состоянии содержатся переменные количества пыли и золы, образующихся, например, в процессах горения и при извержении вулканов. С присутствием в воздухе таких аэрозольных частиц связаны яркие краски солнечных восходов и закатов, обусловленные рассеянием на них солнечных лучей.

РЕКТИФИКАЦИОННОЕ РАЗДЕЛЕНИЕ ВОЗДУХА


Различные газы, входящие в состав атмосферного воздуха, можно преобразовать в жидкое и даже твердое состояние, если соответственно повысить давление и понизить температуру. Люди нашли для воздуха многочисленные и разнообразные применения. Масштабы применения газовых компонентов атмосферного воздуха в науке и технике, промышленности и быту во много раз расширились после того, как был разработан способ разделения воздушной смеси на отдельные компоненты. Этот способ состоит в том, что воздух сначала преобразуется в жидкое состояние, а затем подвергается дистилляции или ректификации (фракционированию) точно так же, как нефть-сырец разделяется на различные нефтепродукты. Впервые ожижение воздуха успешно осуществили в 1883 З.Вроблевский и К.Ольшевский. Для промышленного применения ректификационного разделения воздуха важны два обстоятельства. Во-первых, газы, входящие в состав воздуха, образуют физическую смесь, а не химическое соединение, и, во-вторых, точки кипения разных компонентов воздуха существенно различаются. Технические средства, созданные с учетом того и другого, обеспечивают практически полное разделение основных компонентов воздуха, причем с высокой степенью чистоты каждого компонента. Процесс разделения воздуха протекает в три этапа: 1) подготовка, или очистка, воздуха, 2) преобразование очищенного воздуха в жидкую фазу (ожижение) и 3) ректификационное разделение жидкой смеси на отдельные газы.



Удаление примесей. Прежде чем воздух поступит на вход ожижительной и ректификационной секций воздухоразделительной установки, из него удаляются все примеси, которые либо взвешены в атмосферном воздухе в виде твердых частиц, либо легко могут превратиться в твердые при понижении температуры. В противном случае неизбежна быстрая закупорка узких каналов оборудования. К таким посторонним примесям относятся водяной пар, пыль, дым и пары других веществ, а также углекислый газ. Основная часть этих примесей задерживается масло- и влагоуловителями, как правило, после компрессорного сжатия. Осушка воздуха после сжатия более предпочтительна, так как в этом случае меньше воды приходится удалять в виде пара, поскольку при сжатии он большей частью превращается в жидкость. Дальнейшая сушка воздуха производится пропусканием его через адсорберы с активированным оксидом алюминия или силикагелем (частично дегидратированным диоксидом кремния). Углекислый газ можно удалять химическим путем за счет реакции с гидроксидом калия (едким кали) или натрия (едким натром). Однако эти химикаты быстро расходуются и требуют частого пополнения. На крупных воздухоразделительных установках используются теплообменные аппараты, в которых удаляются одновременно углекислый газ и водяной пар, а также охлаждается воздух, поступающий на вход системы. Легкозамораживаемые газы оседают в твердом виде на металлических поверхностях теплообменников, которые поддерживаются при очень низких температурах потоком отделенных газов, проходящим по их внутренним каналам. Систему периодически очищают от накопившихся примесей, обращая поток газов в теплообменнике.
Ожижение. Очищенный воздух поступает в секцию ожижения и охлаждается в системе механической рефрижерации, пока основная его часть не превратится в жидкость. В зависимости от давления, до которого воздух был сжат первоначально, его температура здесь снижается до примерно 100 К. Давления цикла находятся в пределах от 0,6 до 20 МПа. При охлаждении используется холод отделенных ранее газов, поступающих из ректификационной секции. В оптимально сконструированном теплообменнике холод отделенных газов практически полностью передается входящему воздуху. На некоторых установках, в частности таких, где часть отделенных газов отбирается в жидком виде, для предварительного охлаждения до примерно -40° С (230 К) предусматриваются теплообменники с фреоном или метилхлоридом. При более низких температурах, необходимых для ожижения воздуха, охлаждающей средой служит либо входящий воздух, либо отделенный азот. Этот газ, сжатый до определенного давления, приводит в движение расширительную машину, или детандер (обращенный компрессор). Расширяясь, газ перемещает поршень, который через коленчатый вал приводит во вращение электрогенератор, выполняющий функцию "тормоза". Поскольку газ при расширении в детандере совершает работу, его теплосодержание и температура понижаются. При первом пуске установки необходимо сначала охладить ее до рабочей температуры, а для этого требуется больше холода, чем в установившемся рабочем режиме (захолаживание установки). Охлаждение можно также осуществлять за счет расширения сжатых газов в газообразной или жидкой фазе при истечении через дроссельный клапан. В этом случае понижение температуры обусловлено эффектом Джоуля - Томсона (дроссель-эффектом). Указанные методы охлаждения основаны на разных термодинамических эффектах, и если ввести их в цикл в правильной последовательности, то можно использовать преимущества каждого из них
(см. также
ТЕПЛОТА ;
ТЕРМОДИНАМИКА ;
ФИЗИКА НИЗКИХ ТЕМПЕРАТУР).
Секции ожижения и ректификации, работающие при криогенных температурах, требуют хорошей наружной теплоизоляции. Поэтому аппараты названных секций снабжаются кожухами, заполненными такими теплоизолирующими материалами, как минеральная вата, стекловата и пористый вулканический пепел. Конструкционные материалы теплообменников, ректификационных колонн и соединительных трубопроводов выбираются очень тщательно. Углеродистые стали при криогенных температурах становятся хрупкими. Поэтому предпочтение отдается таким материалам, как медь, бронза, латунь, нержавеющая сталь и алюминий, обнаруживающим в криогенных условиях превосходные прочностные характеристики.
Ректификация. Разделение ожиженного воздуха на составляющие производится в вертикальных цилиндрических аппаратах, называемых ректификационными колоннами. Внутри такой колонны имеется вертикальный ряд горизонтальных "тарелок" с отверстиями, через которые вниз стекает жидкость, а из нижней части колонны поднимается газ, вступая в контакт с жидкостью на тарелках. В установках для выделения с высокой степенью чистоты всех компонентов воздуха предусматривается целый ряд таких колонн. В верхнюю часть каждой колонны вводится жидкость соответствующего состава, а в нижней создаются условия, необходимые для достаточно интенсивного парообразования, так что в колонне происходит постепенное разделение смеси. В условиях нормального атмосферного давления воздух ожижается при температуре около 80 К (-190° C); состав смеси изменяется по сравнению с первоначальным. Если исходный воздух содержит приблизительно 79% азота и 21% кислорода, то в результате естественного кинетического перераспределения в жидкости будет 65% азота и 35% кислорода, а в газе над жидкостью - 87% азота и 13% кислорода. Другие составляющие газы ведут себя точно так же, независимо от соотношения между кислородом и азотом. Как правило, пар над жидкостью обогащен компонентом с более низкой температурой кипения. Соотношение между фазами зависит, конечно, от давления. По мере того как жидкость опускается, а пары поднимаются по ректификационной колонне, концентрации выделяемых компонентов в них повышаются; в конце концов, в нижней части колонны отбирается кислород "товарной" чистоты, в ее верхней части - высококачественный азот, в других точках - аргон и смесь "более редких" газов. Поскольку на воздухоразделительных установках температура, как правило, не опускается ниже точки кипения азота, неон и гелий остаются неожиженными, и их можно несконденсированными выводить в виде смеси с азотом из основной ректификационной колонны. Смеси кислорода с аргоном разделять труднее, чем смеси газов с большой разницей в температурах кипения. На крупных воздухоразделительных установках конденсационно-испарительный процесс для увеличения выхода аргона высокой чистоты дополняется химическим процессом. К смеси кислорода, азота и аргона, отбираемой из криогенной секции системы, добавляется дозированное количество газообразного водорода. Кислород вступает в реакцию с водородом в присутствии палладиевого катализатора, и образуется вода, которая удаляется в осушителях. Остающаяся газообразная смесь аргона и азота вновь охлаждается и направляется на повторную ректификацию. Редкие газы (гелий, неон, криптон и ксенон) окончательно разделяются на комбинированных установках, где конденсационно-испарительный метод сочетается с методом селективной адсорбции. В качестве адсорбента часто применяется активированный уголь, охлажденный до температуры жидкого азота.
Транспортировка и хранение. Кислород, азот и аргон транспортируются и хранятся как в жидком, так и в газообразном виде. Для криогенных жидкостей используются специальные теплоизолированные сосуды. Низкотемпературные газы хранятся под давлением до 17 МПа в стальных баллонах. Редкие газы отпускаются в стеклянных сосудах Дьюара вместимостью 1-2 л; применяются и стальные термосы.

ПРОМЫШЛЕННОЕ ПРИМЕНЕНИЕ РАЗДЕЛЕННЫХ ГАЗОВ


Вряд ли можно найти какой-либо вид промышленной деятельности, где бы не играл значительную роль тот или иной из разделенных газов воздуха. Ниже отмечаются лишь наиболее важные применения.
Кислород. В металлообработке кислород в сочетании с разными топливными газами (ацетиленом, пропаном, природным газом) применяется для резки и сварки сортовой стали высокотемпературным пламенем. Кислородно-ацетиленовое пламя используется для зачистки металлических поверхностей в целях удаления ржавчины и окалины, а также для пайки твердым припоем многих металлов. В металлургии с помощью кислорода в смеси с топливными газами производится огневая зачистка новой стали для удаления дефектов. Для ускорения процессов выплавки стали кислород в больших количествах расходуется в качестве обезуглероживающего и окислительного агента. В связи со все более широким распространением тугоплавких стекол кислород все шире применяется в технике формования стеклянных изделий. В космических ракетах кислород используется как компонент топлива. Из-за недостатка свободного места в таких летательных аппаратах он хранится в жидком виде, но перед подачей в двигатель преобразуется в газ.
См. также РАКЕТА ; КОСМОСА ИССЛЕДОВАНИЕ И ИСПОЛЬЗОВАНИЕ .
Азот. Благодаря своей относительной инертности азот особенно подходит для защиты продуктов, портящихся (окисляющихся) под воздействием кислорода. В пищевой промышленности к атмосфере азота часто прибегают как к средству предотвращения контакта с кислородом воздуха, способным привести к порче пищевого продукта или к потере естественного запаха. В химической, нефтяной и лакокрасочной промышленности азотная газовая подушка применяется для сохранения чистоты продукта и для предотвращения возгорания и взрыва в ходе технологической обработки. В электронной промышленности газообразным азотом продувают для вытеснения воздуха баллоны электронных ламп и корпуса полупроводниковых приборов перед их завариванием и герметизацией. Азот применяется для создания контролируемой атмосферы при отжиге и термообработке, для продувки расплавленного алюминия в целях удаления растворенного водорода и для очистки вторичного алюминия (скрапа). В электротехнике часто применяется атмосфера азота повышенного давления для поддержания высокого сопротивления изоляции и для увеличения срока службы изоляционных материалов. Пространство для расширения в маслонаполненных трансформаторах обычно заполняют азотом. Жидкий азот широко применяется для охлаждения как в промышленности, так и в научных исследованиях, в частности в экологических тестах.
См. также АЗОТ .
Аргон. В отличие от азота, который может вступать в реакцию с некоторыми металлами при повышенных температурах, аргон совершенно инертен при любых условиях. Поэтому он применяется для создания защитной атмосферы в производстве таких химически активных металлов, как титан и цирконий. Он служит также защитной средой при дуговой сварке трудносвариваемых металлов и сплавов - алюминия, бронзы, меди, монель-металла и нержавеющих сталей. Аргон хорошо подходит для заполнения (с добавкой азота) ламп накаливания. Обладая низкой теплопроводностью, аргон допускает более высокие температуры нити, что повышает световую отдачу лампы, а его значительная молекулярная масса затрудняет испарение металла из раскаленной вольфрамовой нити. В результате увеличивается срок службы лампы. Аргоном, чистым или в смеси с другими газами, заполняют также люминесцентные лампы, как осветительные (с термокатодом), так и рекламные (с холодным катодом). Кроме того, он применяется в производстве высокочистых полупроводниковых материалов (германия и кремния) для изготовления транзисторов. См. также ТРАНЗИСТОР .
Неон, криптон и ксенон. Все эти три газа обладают повышенной способностью к ионизации, т.е. они становятся электропроводящими при значительно меньших напряжениях, чем большинство других газов. Будучи ионизованы, эти газы, так же как аргон и гелий, испускают яркий свет, каждый своего цвета, а потому используются в лампах для рекламного освещения. В электронной промышленности эти редкие газы применяются для заполнения особых видов электронных ламп - стабилитронов, стартеров, фотоэлементов, тиратронов, ультрафиолетовых стерилизационных ламп и счетчиков Гейгера. В атомной промышленности ими наполняют ионизационные и пузырьковые камеры и другие устройства для исследования субатомных частиц и измерения интенсивности проникающего излучения.
Водород, гелий и углекислый газ. Эти газы в больших количествах производятся другими методами, при которых их производство обходится дешевле. Поэтому после выделения в процессе ректификационного разделения воздуха их обычно выпускают в атмосферу. См. также ВОДОРОД .

СЖАТЫЙ ВОЗДУХ


Энергию сжатого воздуха можно использовать для совершения механической работы, создания воздушного потока или воздушной подушки. Сжатый воздух легко транспортируется по трубам и шлангам, так что им можно пользоваться на значительном удалении от источника (компрессора или резервуара высокого давления) без больших потерь энергии в линии передачи.
Применение. Сжатый воздух применяется в пневматических двигателях, которые приводят в движение дрели, ручные шлифовальные и другие пневматические инструменты, в бурильных и отбойных молотках и в воздушных турбинах торпед. Воздушный поток, создаваемый сжатым воздухом, используется для транспортировки по аэрожелобам зерна, угольной пыли и других порошкообразных материалов. С помощью сжатого воздуха вентилируют шахты, здания, другие закрытые помещения, перемешивают жидкости, барботируя их в чанах, создают принудительную тягу в доменных и других печах. Сжатый воздух используется для уравновешения давления воды в водолазных костюмах, для накачки пневматических шин, для приведения в действие тормозов в поездах, для дистанционного воздействия на устройства управления технологическим оборудованием. Всего можно насчитать более 200 различных видов применения сжатого воздуха. Начало применению энергии сжатого воздуха в широких масштабах было положено в 1861, когда М. Соммейе сконструировал водно-поршневой компрессор с приводом от водяного колеса. Сжатый воздух подводился к бурильным молоткам на строительстве туннеля Мон-Сени в Альпах. Ранее вместо этого использовался пар, но отработанный пар создавал невыносимые условия для работающих в туннеле. Преимущества пневмопривода, особенно при проведении подземных горных работ, стали очевидны, и началось быстрое развитие пневмотехники.
Компрессоры. Для подачи воздуха под давлением был разработан поршневой компрессор. Поршень в таком компрессоре приводится в движение первичным двигателем. В такте всасывания воздух втягивается через входной клапан, а при обратном ходе поршня сжимается и выталкивается через другой клапан. Пружинные тарельчатые клапаны работают без механизма внешнего управления. В компрессоре одинарного действия сжатие осуществляется только по одну сторону поршня, а в компрессоре двойного действия для сжатия используются оба конца цилиндра. При сжатии воздуха его температура повышается. Такое нагревание нежелательно, поскольку ухудшаются условия работы поршня. Кроме того, если отводить тепло, выделяющееся при сжатии, то требуется меньше работы для сжатия. Поэтому компрессоры обычно имеют водяное или воздушное охлаждение. При давлениях нагнетания выше 0,4 МПа сжатие осуществляется ступенями. Два или несколько цилиндров соединяют так, что воздух с выхода одной ступени поступает на вход другой, и полное давление нагнетания достигается лишь на выходе последней. Между ступенями предусматриваются теплобменники, понижающие температуру воздуха. Шестиступенчатые компрессоры такого типа способны подавать сжатый воздух под давлением до 100 МПа. Объемные ротационные компрессоры бывают двух типов - пластинчатые и двухроторные. Пластинчатый компрессор устроен так же, как и пластинчатый пневмодвигатель (см. ниже), только ротор вращается в противоположном направлении. В двухроторном компрессоре воздух захватывается в пространстве между роторами и стенкой корпуса и вытесняется зацеплением роторов. Центробежные воздуходувки и компрессоры - это машины ротационного типа, подобные центробежным насосам. Энергия воздуха увеличивается благодаря центробежному действию вращающихся рабочих колес. Воздуходувками называют машины, сжимающие воздух до давления не более 0,3 МПа (изб.), а компрессорами - до давлений, превышающих эту величину. Для повышения давления те и другие делают многоступенчатыми. На одном валу располагают несколько рабочих колес, и воздух, переходя с одной ступени на другую, последовательно сжимается.
Пневмодвигатели. Пневмодвигателем называется машина, преобразующая в механическую работу энергию сжатого воздуха. Пневмодвигатели бывают поршневые, пластинчатые ротационные и турбинные. Сжатие воздуха производится вне двигателя, например в компрессоре.



Поршневые пневмодвигатели. Поршневой пневмодвигатель сходен с паровой машиной. Сжатый воздух поступает в клапанную коробку, и клапан, срабатывая, впускает порцию воздуха в цилиндр. Под давлением воздуха поршень совершает полезную работу через кривошипный или другой механизм, после чего отработанный воздух выпускается в атмосферу. Пневмоцикл может быть без расширения и с расширением.
Пластинчатые ротационные пневмодвигатели. Ротор такого двигателя смещен относительно осевой линии неподвижного корпуса. Прямоугольные пластины (или лопасти), установленные в радиальных пазах ротора, прижимаются к внутренней стенке корпуса. Сжатый воздух поступает в цилиндрический корпус через отверстие в стенке и заполняет "камеру", образуемую стенкой ротора, стенкой корпуса и одной из пластин. Под давлением воздуха пластина вместе с ротором поворачивается, а следующая пластина, проходя мимо отверстия, прерывает поступление воздуха в данную камеру и открывает ему доступ в следующую. Захваченный воздух расширяется, отдавая часть своей энергии, пока не достигается полный объем камеры. После этого открывается выпускное отверстие, и порция отработанного воздуха выходит наружу.
Турбинные пневмодвигатели. В воздушной турбине энергия давления сжатого воздуха преобразуется в кинетическую энергию его направленного движения при расширении воздуха в соплах. Высокоскоростная воздушная струя ударяется о лопатки ротора, действует на него с тангенциальной силой и заставляет вращаться (воздушные турбины сходны с паровыми).

Как свеж для вдоха зимний воздух. Как же легко и приятно дышать полной грудью в лесу, возле моря или в горах. Именно в таких местах мы стремимся провести свои выходные или очередной отпуск. А ведь процентное содержание воздуха в райских уголках нашей планеты такой же, как и в городах, где мы с вами живем. Так в чем же дело? Почему мы не ощущаем такую же чистоту воздуха у себя дома, вдалеке от мечтаемых лесов, гор и морей? Поговорим о составе воздуха в процентном соотношении и о его качестве.

21% кислорода (O2), 0,03% углекислого газа (CO2), все остальное – это 79% азота (N2) и незначительное количество примесей.

Как говорил один из моих школьных учителей: «Собака зарыта в примесях». Дело в том, что за последние 150 лет в атмосферу попало просто громаднейшее количество мышьяка, кобальта, кремния, окислов серы, азота, углерода и других, вредных для здоровья примесей.

Очевидно, что концентрация этих примесей в воздухе сельской местности намного ниже, чем в больших и малых городах. А все, в первую очередь, из-за автотранспорта, который своими выхлопами затуманивает все вокруг. Степень загрязнения драгоценного воздуха определяется в основном географическими условиями.

Такой вот состав воздуха в процентах, друзья. Очевидно, что человек должен задуматься о его качестве и не загрязнять атмосферу. Далее обсудим некоторые интересные факты.

Почему становится плохо в душном помещении?

Человек вдыхает воздух, а выдыхает углекислый газ и что-то там еще в виде газообразных веществ – так нас учили в школе. Там же мы изучали и состав воздуха. Вспомните случай, когда вам, ни с того ни с сего, становилось плохо в закрытом помещении (если таков случай был). Как думаете, из-за чего? Вы будете правы, если предположите, что это помещение давно не проветривалось.

Вам стало нехорошо из-за высокой концентрации все тех же газообразных веществ, которые вы же, вместе с окружающими вас людьми, и надышали. В составе смеси, выдыхаемой человеком, не более 16-18 процентов кислорода и 4-6 процентов углекислого газа. А это в 130-200 раз больше, чем во вдыхаемом вами воздухе.

Также там присутствуют и другие нехорошие соединения. Так что совет регулярно проветривать свои жилища и офисы не должен показаться неуместным. Здоровее будете. Раз уж , то он в ответе за их чистоту и порядок.

Природная очистка воздуха

Летом мы подметаем и обдаем водой асфальт улиц для того, чтобы не дышать мелкодисперсными пылинками. А вот зимой состав воздуха чище хотя бы потому, что эта самая пыль и грязь зависает под сугробами снегопадов.

Деревья, так интенсивно высаживаемые в населенных пунктах, выступают в роли фильтров, очищая атмосферу от избыточного углекислого газа. Так они меняют состав воздуха нам во благо. Зеленые растения поглощают его и насыщают городской воздух кислородом. Все в тех же школах нас учили, что процесс этот называется фотосинтезом.

5 тысяч кубометров воздуха очищается одним деревом, и от 200 тонн пыли нас освобождает небольшой парк. То есть, чем больше будет посажено зелени на Земле, тем качественнее будет вдыхаемый нами воздух. Не зря же растения называют легкими этой планеты.

А про ионизацию когда-нибудь слыхали? Так вот, высокая концентрация в воздухе негативно заряженных частичек (ионов) благотворно влияет на наши с вами организмы. Высокоионизированным воздухом славятся горные приморские курорты и сосновые леса.

Также, если вам посчастливилось жить вблизи водопада или быстротечной горной реки, то воздушные ионы подарят вам крепкое здоровье.

Целебный климат таких мест делает свое дело. Поэтому люди, живущие в этих районах или неподалеку от них, реже болеют и славятся своим долголетием. И да, чуть не забыл, до необходимого уровня. Особенно в зимнюю пору. Дышите вкусно, друзья!

Я тут недавно начал изучать английский язык и наткнулся на один классный сервис. Зарегистрируйтесь на LinguaLeo , если хотите без проблем общаться на английском. Очень интересный и нестандартный подход к обучению.

Делитесь статьей в соц.сетях и подпишитесь на рассылку моего блога.

С вами был Денис Стаценко. Увидимся