Что такое плотность воздуха и чему она равна при нормальных условиях? Плотность и удельный объем влажного воздуха Объем 1 кг воздуха при атмосферном давлении.

Рассмотрены основные физические свойства воздуха: плотность воздуха, его динамическая и кинематическая вязкость, удельная теплоемкость, теплопроводность, температуропроводность, число Прандтля и энтропия. Свойства воздуха даны в таблицах в зависимости от температуры при нормальном атмосферном давлении.

Плотность воздуха в зависимости от температуры

Представлена подробная таблица значений плотности воздуха в сухом состоянии при различных температурах и нормальном атмосферном давлении. Чему равна плотность воздуха? Аналитически определить плотность воздуха можно, если разделить его массу на объем, который он занимает при заданных условиях (давление, температура и влажность). Также можно вычислить его плотность по формуле уравнения состояния идеального газа . Для этого необходимо знать абсолютное давление и температуру воздуха, а также его газовую постоянную и молярный объем. Это уравнение позволяет вычислить плотность воздуха в сухом состоянии.

На практике, чтобы узнать какова плотность воздуха при различных температурах , удобно воспользоваться готовыми таблицами. Например, приведенной таблицей значений плотности атмосферного воздуха в зависимости от его температуры. Плотность воздуха в таблице выражена в килограммах на кубический метр и дана в интервале температуры от минус 50 до 1200 градусов Цельсия при нормальном атмосферном давлении (101325 Па).

Плотность воздуха в зависимости от температуры — таблица
t, °С ρ, кг/м 3 t, °С ρ, кг/м 3 t, °С ρ, кг/м 3 t, °С ρ, кг/м 3
-50 1,584 20 1,205 150 0,835 600 0,404
-45 1,549 30 1,165 160 0,815 650 0,383
-40 1,515 40 1,128 170 0,797 700 0,362
-35 1,484 50 1,093 180 0,779 750 0,346
-30 1,453 60 1,06 190 0,763 800 0,329
-25 1,424 70 1,029 200 0,746 850 0,315
-20 1,395 80 1 250 0,674 900 0,301
-15 1,369 90 0,972 300 0,615 950 0,289
-10 1,342 100 0,946 350 0,566 1000 0,277
-5 1,318 110 0,922 400 0,524 1050 0,267
0 1,293 120 0,898 450 0,49 1100 0,257
10 1,247 130 0,876 500 0,456 1150 0,248
15 1,226 140 0,854 550 0,43 1200 0,239

При 25°С воздух имеет плотность 1,185 кг/м 3 . При нагревании плотность воздуха снижается — воздух расширяется (его удельный объем увеличивается). С ростом температуры, например до 1200°С, достигается очень низкая плотность воздуха, равная 0,239 кг/м 3 , что в 5 раз меньше ее значения при комнатной температуре. В общем случае, снижение при нагреве позволяет проходить такому процессу, как естественная конвекция и применяется, например, в воздухоплавании.

Если сравнить плотность воздуха относительно , то воздух легче на три порядка — при температуре 4°С плотность воды равна 1000 кг/м 3 , а плотность воздуха составляет 1,27 кг/м 3 . Необходимо также отметить значение плотности воздуха при нормальных условиях. Нормальными условиями для газов являются такие, при которых их температура равна 0°С, а давление равно нормальному атмосферному. Таким образом, согласно таблице, плотность воздуха при нормальных условиях (при НУ) равна 1,293 кг/м 3 .

Динамическая и кинематическая вязкость воздуха при различных температурах

При выполнении тепловых расчетов необходимо знать значение вязкости воздуха (коэффициента вязкости) при различной температуре. Эта величина требуется для вычисления числа Рейнольдса, Грасгофа, Релея, значения которых определяют режим течения этого газа. В таблице даны значения коэффициентов динамической μ и кинематической ν вязкости воздуха в диапазоне температуры от -50 до 1200°С при атмосферном давлении.

Коэффициент вязкости воздуха с ростом его температуры значительно увеличивается. Например, кинематическая вязкость воздуха равна 15,06·10 -6 м 2 /с при температуре 20°С, а с ростом температуры до 1200°С вязкость воздуха становиться равной 233,7·10 -6 м 2 /с, то есть увеличивается в 15,5 раз! Динамическая вязкость воздуха при температуре 20°С равна 18,1·10 -6 Па·с.

При нагревании воздуха увеличиваются значения как кинематической, так и динамической вязкости. Эти две величины связаны между собой через величину плотности воздуха, значение которой уменьшается при нагревании этого газа. Увеличение кинематической и динамической вязкости воздуха (как и других газов) при нагреве связано с более интенсивным колебанием молекул воздуха вокруг их равновесного состояния (согласно МКТ).

Динамическая и кинематическая вязкость воздуха при различных температурах — таблица
t, °С μ·10 6 , Па·с ν·10 6 , м 2 /с t, °С μ·10 6 , Па·с ν·10 6 , м 2 /с t, °С μ·10 6 , Па·с ν·10 6 , м 2 /с
-50 14,6 9,23 70 20,6 20,02 350 31,4 55,46
-45 14,9 9,64 80 21,1 21,09 400 33 63,09
-40 15,2 10,04 90 21,5 22,1 450 34,6 69,28
-35 15,5 10,42 100 21,9 23,13 500 36,2 79,38
-30 15,7 10,8 110 22,4 24,3 550 37,7 88,14
-25 16 11,21 120 22,8 25,45 600 39,1 96,89
-20 16,2 11,61 130 23,3 26,63 650 40,5 106,15
-15 16,5 12,02 140 23,7 27,8 700 41,8 115,4
-10 16,7 12,43 150 24,1 28,95 750 43,1 125,1
-5 17 12,86 160 24,5 30,09 800 44,3 134,8
0 17,2 13,28 170 24,9 31,29 850 45,5 145
10 17,6 14,16 180 25,3 32,49 900 46,7 155,1
15 17,9 14,61 190 25,7 33,67 950 47,9 166,1
20 18,1 15,06 200 26 34,85 1000 49 177,1
30 18,6 16 225 26,7 37,73 1050 50,1 188,2
40 19,1 16,96 250 27,4 40,61 1100 51,2 199,3
50 19,6 17,95 300 29,7 48,33 1150 52,4 216,5
60 20,1 18,97 325 30,6 51,9 1200 53,5 233,7

Примечание: Будьте внимательны! Вязкость воздуха дана в степени 10 6 .

Удельная теплоемкость воздуха при температуре от -50 до 1200°С

Представлена таблица удельной теплоемкости воздуха при различных температурах. Теплоемкость в таблице дана при постоянном давлении (изобарная теплоемкость воздуха) в интервале температуры от минус 50 до 1200°С для воздуха в сухом состоянии. Чему равна удельная теплоемкость воздуха? Величина удельной теплоемкости определяет количество тепла, которое необходимо подвести к одному килограмму воздуха при постоянном давлении для увеличения его температуры на 1 градус. Например, при 20°С для нагревания 1 кг этого газа на 1°С в изобарном процессе, требуется подвести 1005 Дж тепла.

Удельная теплоемкость воздуха увеличивается с ростом его температуры. Однако, зависимость массовой теплоемкости воздуха от температуры не линейная. В интервале от -50 до 120°С ее величина практически не меняется — в этих условиях средняя теплоемкость воздуха равна 1010 Дж/(кг·град). По данным таблицы видно, что значительное влияние температура начинает оказывать со значения 130°С. Однако, температура воздуха влияет на его удельную теплоемкость намного слабее, чем на вязкость. Так, при нагреве с 0 до 1200°С теплоемкость воздуха увеличивается лишь в 1,2 раза – с 1005 до 1210 Дж/(кг·град).

Следует отметить, что теплоемкость влажного воздуха выше, чем сухого. Если сравнить и воздуха, то очевидно, что вода обладает более высоким ее значением и содержание воды в воздухе приводит к увеличению удельной теплоемкости.

Удельная теплоемкость воздуха при различных температурах — таблица
t, °С C p , Дж/(кг·град) t, °С C p , Дж/(кг·град) t, °С C p , Дж/(кг·град) t, °С C p , Дж/(кг·град)
-50 1013 20 1005 150 1015 600 1114
-45 1013 30 1005 160 1017 650 1125
-40 1013 40 1005 170 1020 700 1135
-35 1013 50 1005 180 1022 750 1146
-30 1013 60 1005 190 1024 800 1156
-25 1011 70 1009 200 1026 850 1164
-20 1009 80 1009 250 1037 900 1172
-15 1009 90 1009 300 1047 950 1179
-10 1009 100 1009 350 1058 1000 1185
-5 1007 110 1009 400 1068 1050 1191
0 1005 120 1009 450 1081 1100 1197
10 1005 130 1011 500 1093 1150 1204
15 1005 140 1013 550 1104 1200 1210

Теплопроводность, температуропроводность, число Прандтля воздуха

В таблице представлены такие физические свойства атмосферного воздуха, как теплопроводность, температуропроводность и его число Прандтля в зависимости от температуры. Теплофизические свойства воздуха даны в интервале от -50 до 1200°С для сухого воздуха. По данным таблицы видно, что указанные свойства воздуха существенно зависят от температуры и температурная зависимость рассмотренных свойств этого газа различна.

СКОЛЬКО ПЛОТНОСТЬ ВОЗДУХА ПРИ 150 ГРАДУСОВ C (температура по Цельсию), чему она равна в разных единицах кг/м3, г/см3, г/мл, фунт/м3. справочная ТАБЛИЦА 1.

Какая плотность воздуха при 150 градусов Цельсия в кг/м3, г/см3, г/мл, фунт/м3 . Не забывайте о том, что такая физическая величина, характеристика воздуха, как его плотность в кг/м3 (масса единичного объема атмосферного газа, где за единицу объема принимается 1 м3, 1 кубический метр, 1 кубометр, 1 кубический сантиметр, 1 см3, 1 миллилитр, 1 мл или 1 фунт), зависит от нескольких параметров. Среди параметров описывающих условия определения плотности воздуха (удельного веса воздушного газа), я считаю наиболее важными и обязательно учитываемыми такие:

  1. Температура воздушного газа.
  2. Давление при котором измерялась плотность воздушного газа.
  3. Влажность воздушного газа или процентное содержание воды в нем.
При изменении любого из этих условий, величина плотности воздуха в кг/м3, (а значит и то, какой у него объемный вес, какой удельный вес, какая объемная масса) значение будет меняться в определенных пределах. Даже если остальные два параметра останутся стабильными (не изменятся). Поясню подробнее, для нашего случая, когда мы хотим узнать какая плотность воздуха при 150 градусов Цельсия (в граммах или килограммах). Итак, температура воздушного газа задана и выбрана вами в запросе. Так вот, для того чтобы корректно описать сколько плотность в кг/м3, г/см3, г/мл, фунт/м3 нам нужно, либо указать второе условие – давление при котором она измеряется. Либо составить график (таблицу), где будет отражено изменение плотности (удельного веса кг/м3, объемной массы кг/м3, объемного веса кг/м3) воздуха в зависимости от давления, созданного при эксперименте.

Если вас интересует второй случай плотности воздуха при T = 150 градусов C , то извините, но у меня нет никакого желания копировать табличные данные, огромный специальный справочник плотности воздуха при различном давлении. Я не могу пока решиться на такой колоссальный объем работы, да и не вижу в том необходимости. Смотрите справочник. Узкую профильную информацию или редкие специальные данные, значения плотности, надо искать в первоисточниках. Так разумнее.

Более реально, а вероятно и более практично с нашей точки зрения указать, сколько плотность воздуха при 150 градусов Цельсия , для такой ситуации, когда давление задано константой и это атмосферное давление (при нормальных условиях – самый популярный вопрос). Кстати, вы помните сколько это - нормальное атмосферное давление? Чему оно равно? Напомню, нормальное атмосферное давление принято считать равным 760 мм ртутного столба, или 101325 Па (101 кПа), в принципе это и есть нормальные условия с поправкой на температуру. Значение, чему равна плотность воздуха в кг/м3 при данной температуре воздушного газа вы увидите, найдете, узнаете в таблице 1 .

Однако, нужно сказать, что указанные в таблице значения величины плотности воздуха при 150 градусов в кг/м3, г/см3, г/мл , окажутся верными не для любого атмосферного, а только для сухого газа. Как только мы меняем исходные условия и изменяем влажность воздушного газа, он сразу будет обладать другими физическими свойствами. И его плотность (вес 1 куба воздуха в килограммах) при данной температуре в градусах C (Цельсия) (кг/м3) так же станет отличаться от величины плотности сухого газа.

Справочная таблица 1. Какая ПЛОТНОСТЬ ВОЗДУХА ПРИ 150 ГРАДУСОВ Цельсия (C). СКОЛЬКО ВЕСИТ 1 КУБ АТМОСФЕРНОГО ГАЗА (вес 1 м3 в килограммах, вес 1 кубометра кг, вес 1 кубического метра газа в г).

Плотность воздуха - это физическая величина, характеризующая удельную массу воздуха при естественных условиях или массу газа атмосферы Земли на единицу объема. Величина плотности воздуха представляет собой функцию от высоты производимых измерений, от его влажности и температуры.

За стандарт плотности воздуха принята величина, равная 1,29 кг/м3, которая вычисляется как отношение его молярной массы (29 г/моль) к молярному объему, одинаковому для всех газов (22,413996 дм3), соответствующая плотности сухого воздуха при 0°С (273,15°К) и давлении 760 мм ртутного столба (101325 Па) на уровне моря (то есть при нормальных условиях).

Не так давно сведения о плотности воздуха получали косвенно за счет наблюдений за полярными сияниями, распространением радиоволн, метеорами. С момента появления искусственных спутников Земли плотность воздуха начали вычислять благодаря данным, полученным от их торможения.

Еще один метод заключается в наблюдениях за расплыванием искусственных облаков из паров натрия, создаваемых метеорологическими ракетами. В Европе плотность воздуха у поверхности Земли составляет 1,258 кг/м3, на высоте пяти км - 0,735, на высоте двадцати км - 0,087, на высоте сорока км - 0,004 кг/м3.

Различают два вида плотности воздуха: массовая и весовая (удельный вес).

Весовая плотность определяет вес 1 м3 воздуха и вычисляется по формуле γ = G/V, где γ – весовая плотность, кгс/м3; G — вес воздуха, измеряемый в кгс; V – объем воздуха, измеряемый в м3. Установлено, что 1 м3 воздуха при стандартных условиях (барометрическое давление 760 мм ртутного столба, t=15°С) весит 1,225 кгс , исходя из этого, весовая плотность (удельный вес) 1 м3 воздуха равна γ =1,225 кгс/м3.

Следует принять во внимание, что вес воздуха – это величина изменчивая и меняется в зависимости от различных условий, таких как географическая широта и сила инерции, которая возникает при вращении Земли вокруг своей оси. На полюсах вес воздуха на 5% больше, чем в зоне экватора.

Массовая плотность воздуха – это масса 1 м3 воздуха, обозначаемая греческой буквой ρ. Как известно, масса тела – величина постоянная. За единицу массы принято считать массу гири из иридистой платины, которая находится в Международной палате мер и весов в Париже.

Массовая плотность воздуха ρ вычисляется по следующей формуле: ρ = m / v. Здесь m – масса воздуха, измеряемая в кг×с2/м; ρ – его массовая плотность, измеряемая в кгс×с2/м4.

Массовая и весовая плотности воздуха находятся в зависимости: ρ = γ / g, где g – коэффициент ускорения свободного падения, равный 9,8 м/с². Откуда следует, что массовая плотность воздуха при стандартных условиях равна 0,1250 кг×с2/м4.

При изменении барометрического давления и температуры плотность воздуха изменяется. Исходя из закона Бойля-Мариотта, чем больше давление, тем больше будет плотность воздуха. Однако с уменьшением давления с высотой, уменьшается и плотности воздуха, что привносит свои коррективы, в результате чего закон изменения давления по вертикали становится сложнее.

Уравнение, которое выражает данный закон изменения давления с высотой в атмосфере, находящейся в покое, называется основным уравнением статики .

Оно гласит, что с увеличением высоты давление изменяется в меньшую сторону и при подъеме на одну и ту же высоту уменьшение давления тем больше, чем больше сила тяжести и плотность воздуха.

Важная роль в этом уравнении принадлежит изменениям плотности воздуха. В итоге можно сказать, что чем выше подниматься, тем меньше будет падать давление при подъеме на одинаковую высоту. Плотность воздуха от температуры зависит следующим образом: в теплом воздухе давление уменьшается менее интенсивно, чем в холодном, следовательно, на одинаково равной высоте в теплой воздушной массе давление более высокое, чем в холодной.

При изменяющихся значениях температуры и давления массовая плотность воздуха вычисляется по формуле: ρ = 0,0473хВ / Т. Здесь В – это барометрическое давление, измеряемое в мм ртутного столба, Т — температура воздуха, измеряемая в Кельвинах.

Как выбирают , по каким характеристикам, параметрам?

Что такое промышленный осушитель сжатого воздуха? Читайте про это , наиболее интересная и актуальная информация.

Какие сейчас цены на озонотерапию? Вы узнаете об этом в данной статье:
. Отзывы, показания и противопоказания при озонотерапии.

Также плотность определяется и влажностью воздуха. Наличие водяных поров приводит к уменьшению плотности воздуха, что объясняется низкой молярной массой воды (18 г/моль) на фоне молярной массы сухого воздуха (29 г/моль). Влажный воздух можно рассмотреть как смесь идеальных газов, в каждом из которых комбинация плотностей позволяет получить требуемое значение плотности для их смеси.

Такая, своего рода, интерпретация позволяет определять значения плотности с уровнем погрешности менее 0,2% в диапазоне температур от −10 °C до 50 °C. Плотность воздуха позволяет получить величину его влагосодержания, которая вычисляется путем деления плотности водяного пара (в граммах), который содержится в воздухе, на показатель плотности сухого воздуха в килограммах .

Основное уравнение статики не позволяет решать постоянно возникающие практические задачи в реальных условиях изменяющейся атмосферы. Поэтому его решают при различных упрощенных предположениях, которые соответствуют фактическим реальным условиям, за счет выдвижения ряда частных предположений.

Основное уравнение статики дает возможность получить значение вертикального градиента давления, который выражает изменение давления при подъеме или спуске на единицу высоты, т. е. изменение давления на единицу расстояния по вертикали.

Вместо вертикального градиента нередко используют обратную ему величину - барическую ступень в метрах на миллибар (иногда еще встречается устаревший вариант термина «градиент давления» - барометрический градиент).

Низкая плотность воздуха определяет незначительное сопротивление передвижению. Многими наземными животными, в ходе эволюции, использовались экологические выгоды этого свойства воздушной среды, за счет чего они приобрели способность к полету. 75% всех видов наземных животных способны к активному полету. По большей части это насекомые и птицы, но встречаются млекопитающие и рептилии.

Видео на тему «Определение плотности воздуха»


03.05.2017 14:04 1393

Сколько весит воздух.

Несмотря на то, что мы не можем увидеть некоторые вещи существующие в природе, это вовсе не значит, что их нет. Точно также и с воздухом - он невидим, но мы им дышим, ощущаем его, значит он есть.

У всего существующего есть свой вес. А есть ли он у воздуха? И если да, то сколько весит воздух? Давайте это выясним.

Когда мы что-то взвешиваем (например яблоко, держа его за веточку), мы делаем это в воздухе. Поэтому мы не учитываем самого воздуха, поскольку вес воздуха в воздухе равен нулю.

К примеру, если мы возьмем пустую стеклянную бутылку и взвесим ее, полученный результат мы будем считать весом колбы, не задумываясь о том, что она наполнена воздухом. Однако, если мы плотно закроем бутылку и откачаем из нее весь воздух, то получим уже совсем иной результат. Вот так-то.

Воздух состоит из соединения нескольких газов: кислорода, азота и других. Газы очень легкие вещества, но все же они имеют вес, хотя и не большой.

Для того, чтобы убедиться, что воздух имеет вес, попросите взрослых помочь вам провести следующий несложный опыт: Возьмем палку примерно 60 см. длиной и на ее середине привяжем веревочку.

Далее, к обоим концам нашей палки прикрепим 2 надутых одинаковых по размеру воздушных шарика. А теперь подвесим нашу конструкцию за веревочку,привязаннуюк ее середине. В результате, мы увидим, что она висит горизонтально.

Если мы сейчас возьмем иголку и проткнем ею один из надутых шариков, из него выйдет воздух, и тот конец палки, к которому он был привязан, поднимется вверх. А если мы проколем и второй шарик, то концы палки сравняются и она снова будет висеть горизонтально.

Что это значит? А то, что воздух в надутом шарике плотнее (то есть тяжелее), чем тот, который находится вокруг него. По этому когда шарик сдулся, он стал легче.

Вес воздуха, зависит от разных факторов. Так например, воздух над горизонтальной плоскостью - это атмосферное давление.

Воздух, как впрочем и все предметы, которые нас окружают, подвержен земному притяжению. Именно оно придает воздуху вес, который равен 1 килограмму на квадратный сантиметр. При этом плотность воздуха равна около 1,2 кг/м3, то есть куб со стороной 1 м, наполненный воздухом, весит 1,2 кг.

Воздушный столб, вертикально поднимающийся над Землей, тянется на несколько сотен километров. Это значит, что на прямо стоящего человека, на его голову и плечи (площадь которых составляет примерно 250 квадратных сантиметров, давит столб воздуха весом около 250 кг!

Если бы такой огромной тяжести не противостояло такое же давление внутри нашего тела, мы бы просто не смогли ее выдерживать и она раздавила бы нас. Существует еще один интересный опыт, который поможет понять все что мы сказали выше:

Берем лист бымаги и растягиваем его двумя руками. Затем попросим кого нибудь (например младшую сестренку) с одной стороны надавить на него пальцем. Что получилось? Конечно же на бумаге образовалась дырка.

А теперь проделаем то же самое еще раз, только теперь нужно будет надавить на одно и то же место двумя указательными пальцами, но с разных сторон. Вуаля! Бумага осталась целой! Хотите знать почему?

Просто давление нам лист бумаги с обеих сторон было одинаковым. То же самое происходит и с давлением воздушного столба и встречным давлением внутри нашего тела: они равны.

Таким образом,мы выяснили, что: воздух имеет вес и со всех сторон давит им на наше тело. Однако, он не может раздавить нас, поскольку встречное давление нашего тела равно внешнему,то есть атмосферному.

Проделанный нами последний опыт показал это наглядно: если надавить на лист бумаги с одной стороны, он порвется. Но если сделать это с обеих сторон, этого не произойдет.


Плотность и удельный объем влажного воздуха являются величинами переменными, зависящими от температуры и воздушной среды. Эти величины нужно знать при подборе вентиляторов для , при решении задач, связанных с перемещением сушильного агента по воздуховодам, при определении мощности электродвигателей вентиляторов.

Это масса (вес) 1 куб.м смеси воздуха и водяного пара при определенной температуре и относительной влажности. Удельный объем представляет собой объем воздуха и водяного пара, приходящийся на 1 кг сухого воздуха.

Влаго- и теплосодержание

Масса в граммах, приходящаяся на единицу массы (1 кг) сухого воздуха, в общем их объеме называется влагосодержанием воздуха . Оно получается путем деления величины плотности водяного пара, содержащегося в воздухе, выраженной в граммах, на величину плотности сухого воздуха в килограммах.

Чтобы определить расход тепла на влаги, нужно знать величину теплосодержания влажного воздуха . Под этой величиной понимается , содержащегося в смеси воздуха и водяного пара. Оно численно равно сумме:

  • теплосодержания сухой части воздуха, нагретого до температуры процесса сушки
  • теплосодержания водяного пара в воздухе при 0°С
  • теплосодержания этого пара, нагретого до температуры процесса сушки
  • Теплосодержание влажного воздуха выражается в килокалориях на 1 кг сухого воздуха или в джоулях. Килокалория - это техническая единица теплоты, затрачиваемой на нагрев 1 кг воды на 1°С (при температуре от 14,5 до 15,5°С). В системе СИ