Растворитель при обработке ядерных отходов. Утилизация ядерных отходов

Ядерное топливо - материал, используемый в ядерных реакторах для проведения управляемой цепной реакции. Оно чрезвычайно энергоемко и небезопасно для человека, что накладывает ряд ограничений на его использование. Сегодня мы с вами узнаем, что собой представляет топливо ядерного реактора, как оно классифицируется и производится, где применяется.

Ход цепной реакции

Во время цепной ядерной реакции, ядро делится на две части, которые называют осколками деления. Одновременно с этим выделяется несколько (2-3) нейтронов, которые впоследствии вызывают деление следующих ядер. Процесс происходит при попадании нейтрона в ядро исходного вещества. Осколки деления имеют большую кинетическую энергию. Их торможение в веществе сопровождается выделением огромного количества тепла.

Осколки деления, вместе с продуктами их распада, называют продуктами деления. Ядра, которые делятся нейтронами любой энергии, называют ядерным горючим. Как правило, они представляют собой вещества с нечетным количеством атомов. Некоторые ядра делятся сугубо нейтронами, энергия которых выше определенного порогового значения. Это преимущественно элементы с четным числом атомов. Такие ядра называют сырьевым материалом, так как в момент захвата нейтрона пороговым ядром образуются ядра горючего. Комбинация горючего и сырьевого материала называется тем самым ядерным топливом.

Классификация

Ядерное топливо делится на два класса:

  1. Природное урановое. Оно содержит делящиеся ядра урана-235 и сырье урана-238, которое способно образовывать плутоний-239 при захвате нейтрона.
  2. Вторичное топливо, не встречающееся в природе. К нему, кроме всего прочего, относится плутоний-239, который получается из топлива первого вида, а также уран-233, образующийся при захвате нейтронов ядрами тория-232.

С точки зрения химического состава, бывают такие виды ядерного топлива:

  1. Металлическое (в том числе сплавы);
  2. Оксидное (к примеру, UO 2);
  3. Карбидное (к примеру PuC 1-x);
  4. Смешанное;
  5. Нитридное.

ТВЭЛ и ТВС

Топливо для ядерных реакторов используется в виде таблеток небольшого размера. Они помещаются в герметично-закрытые тепловыделяющие элементы (ТВЭЛы), которые, в свою очередь, по несколько сотен объединяются в тепловыделяющие сборки (ТВС). К ядерному топливу предъявляются высокие требования по совместимости с оболочками ТВЭЛов. Оно должно иметь достаточную температуру плавления и испарения, хорошую теплопроводность и не сильно увеличиваться в объеме при нейтронном облучении. Также во внимание берется технологичность производства.

Применение

На атомные электростанции и другие ядерные установки топливо приходит в виде ТВС. Они могут загружаться в реактор как во время его работы (на место выгоревших ТВС), так и во время ремонтной кампании. В последнем случае тепловыделяющие сборки меняют крупными группами. При этом лишь третья часть топлива заменяется полностью. Наиболее выгоревшие сборки выгружаются из центральной части реактора, а на их место ставятся частично выгоревшие сборки, которые ранее находились в менее активных областях. Следовательно, на место последних устанавливаются новые ТВС. Эта нехитрая схема перестановки считается традиционной и имеет ряд преимуществ, главным из которых является обеспечение равномерного энерговыделения. Конечно же, это условная схема, которая дает лишь общие представления о процессе.

Выдержка

После изъятия отработанного ядерного топлива из активной зоны реактора, его отправляют в бассейн выдержки, который, как правило, находится неподалеку. Дело в том, что в отработанных ТВС содержится огромное количество осколков деления урана. После выгрузки из реактора каждый ТВЭЛ содержит порядка 300 тысяч Кюри радиоактивных веществ, выделяющих 100 кВт/час энергии. За счет нее топливо саморазогревается и становится высокорадиоактивным.

Температура недавно выгруженного топлива может достигать 300°С. Поэтому его выдерживают на протяжении 3-4 лет под слоем воды, температура которой поддерживается в установленном диапазоне. По мере хранения под водой, радиоактивность топлива и мощность его остаточных выделений падает. Примерно через три года саморазогрев ТВС доходит уже до 50-60°С. Тогда топливо извлекают из бассейнов и отправляют на переработку или захоронение.

Металлический уран

Металлический уран используется в качестве топлива для ядерных реакторов относительно редко. Когда вещество достигает температуры 660°С, происходит фазовый переход, сопровождающийся изменением его структуры. Попросту говоря, уран увеличивается в объеме, что может привести к разрушению ТВЭЛа. В случае длительного облучения при температуре 200-500°С вещество подвергается радиационному росту. Суть этого явления заключается в удлинении облученного уранового стержня в 2-3 раза.

Применение металлического урана при температуре более 500°С затрудняется из-за его распухания. После деления ядра образуется два осколка, суммарный объем которых превышает объем того самого ядра. Часть осколков деления представлена атомами газов (ксенон, криптон и др.). Газ накапливается в порах урана и формирует внутреннее давление, которое растет по мере увеличения температуры. За счет увеличения объема атомов и повышения давления газов ядерное топливо начинает распухать. Таким образом, под этим подразумевается относительное изменение объема, связанное с делением ядер.

Сила распухания зависит от температуры ТВЭЛов и выгорания. С увеличением выгорания, возрастает количество осколков деления, а с увеличение температуры и выгорания - внутреннее давление газов. Если топливо обладает более высокими механическими качествами, то оно менее подвержено распуханию. Металлический уран к таким материалам не относится. Поэтому его применение в качестве топлива для ядерных реакторов ограничивает глубину выгорания, являющуюся одной из главных характеристик такого топлива.

Механические свойства урана и его радиационная стойкость улучшаются путем легирования материала. Это процесс предполагает добавление к нему алюминия, молибдена и других металлов. Благодаря легирующим добавкам, число нейтронов деления, необходимое на один захват, снижается. Поэтому для этих целей используются материалы, которые слабо поглощают нейтроны.

Тугоплавкие соединения

Хорошим ядерным топливом считаются некоторые тугоплавкие соединения урана: карбиды, окислы и интерметаллические соединения. Наиболее распространенным из них является диоксид урана (керамика). Его температура плавления составляет 2800°С, а плотность - 10,2 г/см 3 .

Так как у этого материала нет фазовых переходов, он менее подвержен распуханию, нежели сплавы урана. Благодаря этой особенности температуру выгорания можно повысить на несколько процентов. На высоких температурах керамика не взаимодействует с ниобием, цирконием, нержавеющей сталью и прочими материалами. Ее главный недостаток заключается в низкой теплопроводности - 4,5 кДж (м*К), ограничивающей удельную мощность реактора. Кроме того, горячая керамика склонна к растрескиванию.

Плутоний

Плутоний считается низкоплавким металлом. Он плавится при температуре 640°С. Из-за плохих пластических свойств он практически не поддается механической обработке. Токсичность вещества усложняет технологию изготовления ТВЭЛов. В атомной промышленности неоднократно предпринимались попытки использования плутония и его соединений, однако они не увенчались успехом. Использовать топливо для атомных электростанций, содержащее плутоний, нецелесообразно из-за примерно 2-кратного уменьшения периода разгона, на что не рассчитаны стандартные системы управления реакторами.

Для изготовления ядерного топлива, как правило, используют диоксид плутония, сплавы плутония с минералами, а также смесь карбидов плутония с карбидами урана. Высокими механическими свойствами и теплопроводностью обладают дисперсионные топлива, в которые частицы соединений урана и плутония размещаются в металлической матрице из молибдена, алюминия, нержавеющей стали и прочих металлов. От материала матрицы зависит радиационная стойкость и теплопроводность дисперсионного топлива. К примеру, на первой АЭС дисперсионное топливо состояло из частиц уранового сплава с 9% молибдена, которые были залиты молибденом.

Что касается ториевого топлива, то оно на сегодня не используется в силу трудностей производства и переработки ТВЭЛов.

Добыча

Значительные объемы основного сырья для ядерного топлива - урана сконцентрированы в нескольких странах: Россия, США, Франция, Канада и ЮАР. Его залежи, как правило, находятся около золота и меди, поэтому все эти материалы добывают одновременно.

Здоровье людей, работающих на разработках, подвержено большой опасности. Дело в том, что уран является токсичным материалом, и газы, выделяющиеся в процессе его добычи, могут вызывать рак. И это притом, что в руде содержится не более 1% этого вещества.

Получение

Производство ядерного топлива из урановой руды включает в себя такие стадии, как:

  1. Гидрометаллургическая переработка. Включает в себя выщелачивание, дробление и экстракционное или сорбционное извлечение. Результатом гидрометаллургической переработки является очищенная взвесь закиси оксиурана, диураната натрия или диураната аммония.
  2. Перевод вещества из оксида в тетрафторид или гексафторид, используемый для обогащения урана-235.
  3. Обогащение вещества путем центрифугирования или газовой термодиффузии.
  4. Перевод обогащенного материала в диоксид, из которого производят «таблетки» ТВЭЛов.

Регенерация

Во время работы ядерного реактора топливо не может полностью выгорать, поэтому воспроизводятся свободные изотопы. В этой связи отработанные ТВЭЛЫ подлежат регенерации с целью повторного использования.

На сегодня эту задачу решают путем пьюрекс-процесса, состоящего из таких этапов, как:

  1. Разрезание ТВЭЛов на две части и растворение их в азотной кислоте;
  2. Очистка раствора от продуктов деления и частей оболочки;
  3. Выделение чистых соединений урана и плутония.

После этого полученный диоксид плутония идет на производство новых сердечников, а уран - на обогащение или также изготовление сердечников. Переработка ядерного топлива является сложным и дорогостоящим процессом. Ее стоимость оказывает существенное влияние на экономическую целесообразность использования атомных электростанций. То же самое можно сказать и про захоронение отходов ядерного топлива, не пригодных к регенерации.

МОСКВА, 21 июн — РИА Новости. Предприятие госкорпорации "Росатом" "Производственное объединение "Маяк" (Озерск, Челябинская область) планирует к 2020 году стать первым в мире предприятием, овладевшим технологиями переработки отработавшего ядерного топлива (ОЯТ) любого типа, сообщил РИА Новости на форуме "Атомэкспо-2017" заместитель генерального директора "Маяка" по стратегическому развитию Дмитрий Колупаев.

Организатор "Атомэкспо-2017" — госкорпорация "Росатом". Генеральный информационный партнер форума — агентство РИА Новости (флагманский ресурс МИА "Россия сегодня").

Переработка отработавшего ядерного топлива — высокотехнологичный процесс, направленный на минимизирование радиационной опасности ОЯТ, безопасную утилизацию неиспользуемых компонентов, выделение полезных веществ и обеспечение их дальнейшего использования. Промышленная переработка ОЯТ ведется в трех странах — в России, Франции, Великобритании.

"Маяк" выполняет проект по расширению номенклатуры перерабатываемого у себя ОЯТ. В частности, освоена технология переработки ОЯТ российских реакторов ВВЭР-1000. Этот проект даст возможность предприятию в ближайшие полтора-два года стать единственным в мире предприятием, которое может перерабатывать любые виды отработавшего ядерного топлива, в том числе ОЯТ зарубежного дизайна, а также дефектных топливных сборок. Это даст Росатому дополнительные конкурентные преимущества на мировых рынках.

"Маяк" — первый промышленный объект отечественной атомной отрасли. Он был создан для наработки оружейного плутония, необходимого для создания советского атомного оружия. Приоритетные направления работы "Маяка" в настоящее время — переработка отработавшего ядерного топлива, производство изотопов и средств радиационного контроля, выполнение государственного оборонного заказа.

"Всеядный" комплекс

"За последние годы "Маяк" значительно продвинулся вперед в плане переработки отработавшего ядерного топлива исследовательских реакторов. Освоена переработка нескольких топливных композиций, но ключевым, пожалуй, станет проект по переработке уран-циркониевого топлива. Производственные мощности для этого должны быть готовы в нынешнем году", — сказал Колупаев.

Он пояснил, что это будет опытная установка, которая позволит сначала отработать необходимые технологии, а затем и фактически станет производственной установкой.

"Такого топлива относительно немного, и это, прежде всего, отработавшее топливо наших атомных ледоколов. Оно находится в сухом контейнерном хранилище на Севере, но сколь угодно долго оно эксплуатироваться не может. Поэтому задача переработки этого вида ОЯТ должна быть решена, и для этого не требуются большие производственные мощности", — отметил собеседник агентства.

Опытная переработка уран-циркониевого ОЯТ должна быть реализована к 2018 году, добавил Колупаев. "Это фактически сделает "Маяк" абсолютным технологическим лидером с точки зрения номенклатуры топливных композиций, которое наше предприятие сможет перерабатывать, потому что после освоения данной технологии у нас сможет быть переработана любая топливная композиция", — сказал он.

"И финальной точкой станет, пожалуй, освоение переработки отработавшего топлива реакторов АМБ первой очереди Белоярской АЭС. Там проблема уже не столько в самих топливных композициях (на первом и втором блоках станции использовались несколько десятков видов топлива), а в геометрических размерах отработавших тепловыделяющих сборок", — сообщил Колупаев.

Эти сборки достигают в длину 14 метров, и для того чтобы их разделывать, необходима специальная установка, пояснил он.

"Ее планируется создать к 2020 году. И вот тогда на "Маяке" будет полностью создан "всеядный" перерабатывающий комплекс - как по разным типам ОЯТ, так и по размерам отработавших тепловыделяющих сборок", — отметил заместитель гендиректора "Маяка".

Переработка радиоактивных отходов

Помимо переработки ОЯТ, "Маяк" активно занимается развитием технологии переработки радиоактивных отходов, напомнил Колупаев.

"В ближайшее время на предприятии планируется начать эксплуатацию установки по отверждению долгоживущих среднеактивных отходов, главным образом плутонийсодержащих, для которых цементирование, как, допустим, это делают наши коллеги в Великобритании, не является оптимальным. Наш подход базируется на применении керамоподобной матрицы, которая обладает большой долговечностью и хорошей емкостью по отходам", — сказал он.

Прошлый год был для "Маяка" своего рода "пусковым" с точки зрения реализации проекта по переработке источников ионизирующего излучения, отметил Колупаев.

"Мы полностью выполнили свои обязательства по объему возврата источников. В этом году объемы возвращаемых на утилизацию источников будут существенно больше. Мы оптимизируем технологию утилизации источников, чтобы удешевить ее и сделать более привлекательной для клиентов. Это очень важное направление, которое позволит нашим партнерам получить законченный цикл услуг - с момента поставки источников до их полной утилизации", — добавил он.

ЖЖ-пользователь uralochka пишет в своем блоге: Побывать на «Маяке» мне хотелось всегда.
Шутка ли, это место которое является одним из самых наукоемких предприятий России, здесь
был в 1948 году запущен первый атомный реактор в СССР, специалистами ПО «Маяк» был выпущен
плутониевый заряд для первой советской ядерной бомбы. Когда то Озерск назывался
Челябинском-65, Челябинском-40, с 1995 года он стал Озерском. У нас в Трехгорном,
некогда Златоусте-36, городе который также является закрытым, Озерск всегда называли
«Сороковкой», относились с уважением и трепетом.


Это сейчас можно о многом прочитать в официальных источниках, а еще больше в неофициальных,
а было время когда даже примерное расположение и название этих городов хранились в строжайшей
тайне. Помню как мы с моим дедом Яковлевым Евгением Михайловичем, ездили на рыбалку, дак на
вопросы местных - откуда мы, дед всегда отвечал, что из Юрюзани (соседний городок с Трехгорным),
а на въезде в город не было никаких знаков кроме неизменного «кирпича». У деда был один из
лучших друзей, звали его Митрошин Юрий Иванович, я его почему то все детство звал не иначе
как «Ванализ», не знаю почему. Помню, как то я поинтересовался у моей бабушки, а почему,
Ванализ, такой лысый, ведь не единой волосинки? Бабушка, тогда, шепотом объяснила мне,
что Юрий Иванович служил в «сороковке» и ликвидировал последствия большой аварии в 1957,
получил большую дозу радиации, порядком подпортил себе здоровье, и волосы у него больше не растут…

…А теперь спустя много лет я, как фотокорреспондент еду снимать тот самый завод РТ-1 для
агентства «Фото ИТАР-ТАСС». Время меняет все.

Озерск - город режимный, въезд по пропускам, моя анкета больше месяца была на проверке и
вот все готово, можно ехать. Встретили меня сотрудники пресс-службы на КПП, в отличии от
наших тут есть нормальная компьютеризированная система, заезжай с любого КПП, выезжай так
же с любого. После этого мы проехали до административного здания пресс-службы, там я оставил
свою машину, мне посоветовали оставить и мобильный, потому что на территории завода с
мобильными средствами связи находится запрещено. Сказано сделано, едем на РТ-1. На заводе
долго маялись на КПП, как то не сразу нас пропустили со всей моей фототехникой, но вот оно
случилось. Нам дали сурового мужчину с черной кобурой на поясе и в белой одежде. Мы встретились
с администрацией, нам сформировали целую команду провожатых и мы двинули в сан. пропускник.
К сожалению, внешнюю территорию завода, и какие либо охранные комплексы фотографировать
строго запретили, по этому все это время моя камера пролежала в рюкзаке. Вот этот кадр я
снял уже в самом конце, здесь условно начинается «грязная» территория. Разделение это
действительно условно, но соблюдается очень строго, именно это позволяет не растаскивать
радиоактивную грязь по всей окрестности.

Сан. пропускник раздельный, женщины с одного входа, мужчины с другого. Мне мои спутники
показали на шкавчик, сказали снимай все (совсем все), одевай резиновые шлепки, закрывай
шкафчик и двигай вон к тому окошку. Так я и сделал. Стою абсолютно голый, в одной руке у
меня ключ, в другой рюкзак с камерой, а женщина из окошка, которое почему то находится
слишком низко, для такого моего положения интересуется какой у меня размер обуви. Долго
смущаться не пришлось, мне оперативно выдали что то вроде подштанников, легкой рубашки,
комбинезона и обувь. Все белое, чистое и очень приятное на ощупь. Оделся, прицепил к
нагрудному кармашку таблетку дозиметра и почувствовал себя увереннее. Можно выдвигаться.
Ребята меня сразу проинструктировали, что рюкзак на пол не ставить, лишнего не трогать,
фотографировать только то что позволят. Да без проблем - говорю, рюкзак мне еще рано
выкидывать, а проблемы секреты мне тоже не нужны. Вот место где одевается и снимается
грязная обувь. В центре чисто, по краям грязно. Условный порог территории завода.

По территории завода мы перемещались на небольшом автобусе. Внешняя территория без особых
прикрас, блоки цехов связанные галереями для прохода персонала и передачи химии по трубам.
С одной стороны идет большая галерея для забора чистового воздуха из соседнего леса. Это
сделано для того чтобы люди в цехах дышали внешним чистым воздухом. РТ-1 является лишь
одним из семи заводов ПО «Маяк», его назначение прием и переработка отработанного ядерного
топлива (ОЯТ). Это цех с которого все начинается, сюда приходят контейнеры с ОЯТ.
Справа вагон с открытой крышкой. Специалисты отвинчивают верхние винты специальным
оборудованием. После этого из этого помещения все удаляются, закрывается большая дверь
толщиной около полуметра (к сожалению режимщики потребовали снимки с ней удалить).
Дальнейшая работа идет кранами, которые управляются удаленно через камеры. Краны снимают
крышки и извлекают сборки с ОЯТ.

Кранами сборки переносятся вот в эти люки. Обратите внимание на кресты, они нарисованы,
чтобы проще было позиционировать положение крана. Под люками сборки погружаются в
жидкость - конденсат (попросту говоря в дистиллированную воду). После этого сборки на
тележках перемещаются в соседний бассейн, который является временным складом.

Не знаю точно как это называется, но суть понятна - простое приспособление, чтобы не
перетаскивать радиоактивную пыль из одного помещения в другое.

Слева, та самая дверь.

А это то самое смежное помещение. Под ногами сотрудников находится бассейн, с глубиной от 3,5 до 14
метров заполненный конденсатом. ? Еще там видны два блока с Белоярской АЭС, длина их 14 метров.
Называются АМБ - «Атом мирный большой».

Когда смотришь между металлических плит, видишь примерно вот такую картину. Под конденсатом
виднеется сборка топливных элементов от судоходного реактора.

А вот эти сборки только пришли с АЭС. Когда выключили свет, они светились бледно синим свечением.
Очень впечатляюще. Это Черенковское свечение, о сути этого физического явления можно почитать в википедии.

Общий вид цеха.

Идем дальше. Переходы между отделами по коридорам с тусклым желтым светом. Под ногами достаточно
специфичное покрытие, закатанное на все углы. Люди в белом. В общем я как то сразу «Черную Мессу»
вспомнил))). Кстати, про покрытие, очень разумное решение, с одной стороны так удобнее мыть,
ничего нигде не застрянет, и самое главное, в случае любой утечки или аварии, грязный пол можно
легко демонтировать.

Как мне пояснили дальнейшие операции с ОЯТ идут в закрытых помещениях в автоматическом режиме.
Всем процессом, когда то управляли вот с этих пультов, а сейчас все происходит с трех терминалов.
Каждый из них работает на своем автономном сервере, все функции дублируются. В случае отказа всех
терминалов оператор сможет завершить процессы с пульта.

Вкратце о том что происходит с ОЯТ. Сборки разбираются, начинка извлекается, распиливается на
части и помещается в растворитель (азотная кислота), после этого растворенное отработанное топливо
проходит целый комплекс химических преобразований, от туда извлекается уран, плутоний, нептуний.
Не растворимые части, которые не подлежат переработки прессуются и остекленяются. И хранятся на
территории завода под постоянным наблюдением. На выходе после всех этих процессов формируется
готовые сборки уже «заряженные» свежим топливом, которое производят здесь же. Таким образом Маяк
осуществляет полный цикл по работе с ядерным топливом.

Отдел по работе с плутонием.

От активных элементов оператора защищает восемь слоев освинцованного 50 мм стекла. Манипулятор
связан исключительно электрическими связями, никаких «дырок» соединяющих с внутренним отсеком нет.

Мы переместились в цех, который занимается отгрузкой готовой продукции.

Желтый контейнер предназначен для перевозки готовых топливных сборок. На переднем плане крышки от контейнеров.

Внутренности контейнера, сюда по видимому, монтируются твэлы.

Крановщик, управляет краном с любого удобного ему места.

По бокам цельнонержавеющие контейнеры. Как мне объяснили таких всего 16 в мире.

Интересное видео прилетело от студии “Сибирский ГХК”. ГХК - это “Горно-Химический Комбинат” под Красноярском, когда-то бывший центром по наработке оружейного плутония, а теперь специализирующийся на хранении и переработке ОЯТ.

Напомню, переработка ОЯТ - это одна из трех главных технологий замкнутого ядерного топливного цикла (ЗЯТЦ): (1)трансмутации/сжигания в реакторе, (2)экстракции новых делящихся материалов в процессе переработки ОЯТ, и (3)фабрикация нового топлива для пункта #1 (как раз и получаем цикл). Кстати, если вам это совсем не понятно, советую прочесть мой , где я попытался объяснить это максимально подробно.

Так вот, в ГХК с 2009 года строится комплекс сооружений:


    Два корпуса сухого централизованного хранилища ОЯТ РБМК. Это просто хранилище с пеналами ОЯТ РБМК, которые медленно остывают, и будут так делать еще десятилетия. Его задача разгрузить пристанционные хранилища РБМК, которые скоро начнут выводить из эксплуатации. Перерабатывать это ОЯТ не будут - в нем слишком мало остаточное содержание делящихся материалов. Два корпуса позволяют разместить 18000 тонн ОЯТ РБМК.


    Один корпус сухого хранилища ОЯТ ВВЭР-1000 и комплекс перегрузки из мокрого хранилища ВВЭР-1000. Напомню, что при развитии ВВЭР-1000 сразу было решено строить централизованное, а не пристанционные хранилища ОЯТ, и оно было введено в 1985 году на ГХК. Там стоит 8000 тонн ОЯТ ВВЭР-1000, и хранилище близко к заполнению. Теперь сухое (более дешевое) хранилище дополнит первое


    Опытно-демонстрационный центр по переработке ОЯТ ВВЭР-1000. Его производительность будет 250 тонн в год, что примерно равно годовой выгрузке всех ВВЭР-1000/1200 в 2020 году (сейчас меньше).


Именно это строительство и показано на видео


Озвучена цена в 75 +30-35 млрд рублей=110-115 млрд, что довольно интересно. Известно, что сухие хранилища ОЯТ РБМК обошлись в 40 миллиардов, если положить на сухое хранилище ОЯТ ВВЭР-1000 с узлом перегрузки еще 30, то получаем стоимость ОДЦ 40+ миллиардов рублей, что, конечно, недешево.


Опытно-демонстрационный центр по переработке ОЯТ ВВЭР-1000 интересен тем, что здесь будет использоваться технология без сбросов жидких радиоактивных отходов (основная их масса образуется при растворении оболочек твэлов - в французском Ла-Аг, эти ЖРО сбрасывают в океан, например), а количество твердых радиоактивных отходов (это продукты деления и активации конструкции) по объему составляет ¼ от объема занимаемого перерабатываемой ТВС в контейнере, т.е. нужно в итоге в 4 раза меньше объемов окончательного захоронения. Тут есть еще тонкости со временем хранения - которое для ТВС определяется минорными актиноидами и технецием-99 - если в ходе переработки ОЯТ их извлечь и трансмутировать в в специальном реакторе во что-то более короткоживущее, то мы получим вместо сотен тысяч лет хранения ОЯТ сотни лет хранения радиоактивного мусора, оставшегося после переработки - сокращение почти в тысячу раз.


Росэнергоатом очень заинтересован в строительстве этого комплекса - с 27 года на него лягут все расходы на хранение ОЯТ, и без сухих хранилищ и переработки концерну придется туго.


ОДЦ в ГХК так же поучаствует в замыкании ядерного топливого цикла - плутоний ОЯТ ВВЭР-1000, в объеме примерно 2,5 тонны в год будет поступать на изготовления свежего топлива для БН-800 (если разрыв по соглашению СУОП устоит) или БН-1200 (если его построят).


В принципе, дальний план концерна Росэнергоатом - построить 3-6 БН-1200, и все ОЯТ ВВЭР перерабатывать таким образом, получая топливо для БН, а ОЯТ БН-1200, в свою очередь перерабатывать в МОКС топливо для ВВЭР. В итоге получается, что нового ОЯТ на хранение не образуется, а кроме того экономится 15-20% природного урана. Для этого благолепия, правда, надо построить еще более крупный завод по переработке ОЯТ, скажем на 1000 тонн в год (именно столько сейчас у крупнейшего в мире завода Areva в Ла-Аг) - это тоже в планах, впрочем я тут упрощаю - вариантов развития очень много и технологических звеньев тоже заметно больше.

Более подробно планы Росатома можно увидеть на этих трех слайдах:



Владельцы патента RU 2560119:

Изобретение относится к средствам переработки отработавшего ядерного топлива (ОЯТ). В заявленном способе разрушенные при рубке ТВЭЛов таблетки оксидного отработавшего ядерного топлива подвергают растворению при нагревании в водном растворе нитрата железа(III) при мольном отношении железа к урану в топливе, равном 1,5-2,0:1, образовавшийся осадок основной соли железа с нерастворенными продуктами деления ядерного топлива отделяют фильтрованием, а из полученного слабокислого раствора осаждают пероксид уранила путем последовательной подачи в раствор при перемешивании динатриевой соли этилендиаминтетрауксусной кислоты. Далее полученную гетерогенную систему выдерживают не менее 30 минут и после отделения и промывки кислотой и водой осадок пероксида уранила подвергают твердофазному восстановлению при нагревании путем обработки его щелочным раствором гидразингидрата в воде при 2-3-кратном мольном избытке гидразина по отношению к урану, с последующим отделением полученного гидратированного диоксида урана UO 2 ·2H 2 O, промыванием его раствором HNO 3 с концентрацией 0,1 моль/л, водой и сушкой. При этом осадок основных солей железа с продуктами деления, маточный раствор стадии осаждения пероксидов с остатками продуктов деления, отходы щелочных и промывных растворов направляют в сборник отходов для их последующей переработки. Техническим результатом является повышение экологической безопасности и уменьшение количества отходов. 8 з.п. ф-лы.

Изобретение относится к области ядерной энергетики, в частности к переработке отработавшего ядерного топлива (ОЯТ), и может быть использовано в технологической схеме переработки, в том числе МОКС-топлива, так как извлечение из ОЯТ оставшихся количеств U и Pu для приготовления нового топлива является основной задачей замкнутого ядерного топливного цикл, на который ориентирована атомная энергетика страны. В настоящее время актуальным является создание и оптимизация новых, малоотходных, экологически безопасных и экономически целесообразных технологий, которые бы обеспечили переработку ОЯТ как действующих, так и реакторов 3 и 4 поколения на быстрых нейтронах, работающих на смешанном оксидном уран-плутониевом топливе (МОКС-топливо).

Известны способы переработки ОЯТ с помощью фтора или фторсодержащих химических соединений. Образующиеся при этом летучие фтористые соединения компонентов ядерного топлива переходят в газовую фазу и отгоняются. При фторировании диоксид урана превращается в UF 6 , который сравнительно легко испаряется в отличие от плутония, обладающего более низкой летучестью. Обычно при переработке ОЯТ этим способом ОЯТ фторируют, извлекая из него не весь содержащийся в нем уран, а только его необходимое количество, отделяя таким образом его от остальной части перерабатываемого топлива. После этого меняют режим испарения и извлекают из остатка ОЯТ также в виде паров и некоторое количество содержащегося в нем плутония.

[патент РФ №2230130, С22В 60/02, опубл. 19.01.1976]

Недостатком указанной технологии является то, что в этом способе переработки ОЯТ используют газообразные, агрессивные и токсичные в экологическом отношении химические соединения. Таким образом, технология является экологически небезопасной.

Одним из близких по сути к заявляемому способу является известный метод, заявленный в пат. РФ №2403634, (G21C 19/44, опубл. 10.11.2010), по которому регенерация ОЯТ включает стадию растворения топлива в растворе азотной кислоты, стадию электролитического регулирования валентности, с восстановлением Pu до трехвалентного состояния и сохранением пятивалентного состояния Np, стадию экстракции шестивалентного урана экстрагирующим агентом в органическом растворителе; стадию осаждения щавелевой кислотой, приводящую к совместному осаждению второстепенных актинидов и продуктов деления, оставшихся в растворе азотной кислоты, в виде оксалатного осадка; стадию хлорирования с превращением оксалатного осадка в хлориды путем добавления хлористоводородной кислоты к осадку оксалатов; стадию дегидратации с получением синтетических безводных хлоридов путем дегидратации хлоридов в токе газообразного аргона; и стадию электролиза в расплаве солей с растворением безводных хлоридов в расплавленной соли и накоплением урана, плутония и второстепенных актинидов на катоде за счет электролиза.

Недостатком этого способа переработки ОЯТ является его многостадийность и сложность в осуществлении, так как включает электрохимические стадии, которые энергозатратны, требуют специального оборудования и проведения процесса при высокой температуре, в особенности при работе с расплавами солей.

Известен также способ, согласно которому ОЯТ перерабатывают чисто пирохимически с применением солевого расплава урана или плутония, после чего выделенные компоненты ядерного топлива используют повторно. При пирохимической переработке ОЯТ применяют его индукционный нагрев в тигле и его охлаждение путем подвода хладагента к тиглю.

[патент РФ №2226725, G21C 19/46, опубл. 19.01.2009]

Пирометаллургические технологии не приводят к образованию больших количеств жидких радиоактивных отходов (ЖРО), а также обеспечивают компактное размещение оборудования, однако они являются очень энергоемкими и технологически сложны.

Также к способам переработки ОЯТ относятся:

(1) способ, включающий окисление урана газообразным хлором, оксидами азота, диоксидом серы в среде диполярного апротонного растворителя или его смеси с хлорсодержащим соединением [патент РФ №2238600, G21F 9/28, опубл. 27.04.2004];

(2) способ растворения материалов, содержащих металлический уран, включающий окисление металлического урана смесью трибутилфосфат-керосин, содержащей азотную кислоту [патент США №3288568, G21F 9/28, опубл. 10.12.1966];

(3) способ растворения урана, включающий окисление металлического урана раствором брома в этилацетате при нагревании .

К недостаткам указанных способов относятся повышенная пожароопасность систем и ограниченность сферы их использования.

Широко распространенной технологией переработки ОЯТ является Пурекс-процесс (взятый нами за прототип), при котором ОЯТ, содержащее уран, плутоний и продукты деления (ПД) ядерного топлива, растворяют в сильнокислых растворах азотной кислоты при нагревании до 60-80°C. После этого актиниды извлекают из азотнокислого раствора органической фазой, содержащей трибутилфосфат в керосине или другом органическом растворителе. Далее следуют технологические стадии, связанные с разделением урана и плутония и их очисткой от ПД. Пурекс-процесс описан, например, в монографии «The Chemistry of the Actinide and Transactinide Elements», 3rd Edition, Edited by Lester R. Morss, Norman M. Edelstein and Jean Fuger. 2006, Springer, pp. 841-844.

Указанный процесс переработки ОЯТ является многостадийным и основан на применении экологически опасных сред:

(1) азотной кислоты (6-8 моль/л) как растворителя ОЯТ при 60-80°C и образующей при протекании реакций с ее участием агрессивные газообразные продукты;

(2) так как кислотность раствора после завершения растворения примерно 3,5 моль/л по азотной кислоте, то это с неизбежностью приводит к применению экстракции для извлечения U(Pu) органическими растворителями;

(3) использование органических растворителей, токсичных, горючих, легко воспламеняющихся, взрывоопасных и зачастую неустойчивых к радиационному излучению приводит к образованию вместе с водными ЖРО больших объемом отходов (до 7-12 тонн на 1 тонну переработанного ОЯТ).

Задачей настоящего изобретения является создание инновационной, малоотходной, экологически безопасной и экономически целесообразной технологии переработки ОЯТ.

Поставленная задача решается использованием нового способа переработки ОЯТ, характеризующегося тем, что разрушенные при рубке ТВЭЛов таблетки оксидного отработавшего ядерного топлива подвергают растворению при нагревании в водном растворе нитрата железа(III) при мольном отношении железа к урану в топливе, равном 1,5-2,0:1, образовавшийся осадок основной соли железа с нерастворенными продуктами деления ядерного топлива отделяют фильтрованием, а из полученного слабокислого раствора, содержащего преимущественно уранилнитрат, осаждают пероксид уранила путем последовательной подачи в раствор при перемешивании динатриевой соли этилендиаминтетрауксусной кислоты в мольном избытке по отношению к урану, равном 10%, и 30% раствора перекиси водорода, взятой в 1,5-2-кратном мольном избытке по отношению к урану, при температуре не выше 20°C, полученную гетерогенную систему выдерживают не менее 30 минут и после отделения и промывки кислотой и водой осадок пероксида уранила подвергают твердофазному восстановлению при нагревании путем обработки его щелочным раствором гидразингидрата в воде при 2-3-кратном мольном избытке гидразина по отношению к урану, с последующим отделением полученного гидратированного диоксида урана UO 2 ·2H 2 O, промыванием его раствором HNO 3 с концентрацией 0,1 моль/л, водой и сушкой, при этом осадок основных солей железа с продуктами деления, маточный раствор стадии осаждения пероксидов с остатками продуктов деления, отходы щелочных и промывных растворов направляют в сборник отходов для их последующей переработки.

Обычно растворение ОЯТ ведут в интервале температуры 60-90°C не более 5-10 часов с использованием водного раствора нитрата железа(III) с pH от 0,2 до 1,0.

Выделенный пероксид уранила целесообразно промывать раствором HNO 3 с концентрацией 0,05 моль/л, а его твердофазное восстановление вести 10%-ным водным раствором гидразингидрата при pH 10 при 60-90°C в течение 10-15 часов.

Преимущественно сушку гидратированного диоксида урана ведут при 60-90°C.

Возможно вести процесс в двух последовательно соединенных бифункциональных аппаратах, конструкция которых предусматривает наличие узла фильтрации и возможности изменения на 180° пространственной ориентации аппаратов, первый из которых используют для растворения и сбора отходов процесса, а второй - для осаждения пероксида урана, его твердофазного восстановления и выделения целевого продукта.

Технический результат способа достигается тем, что на всех стадиях переработки ОЯТ компоненты топлива (UO 2 с содержанием до 5 масс.% 239 Pu) - U(Pu), растворяющий (нитрат железа), осаждающий (пероксид водорода) и восстанавливающий реагенты находятся в разных фазах, удобных для их дальнейшего разделения. На стадии растворения уран переходит в раствор, а основная масса растворяющего реагента выделяется в виде твердого соединения. На стадии осаждения пероксида и его твердофазного восстановительного превращения в диоксид урана целевой продукт находится в твердом виде и легко отделяется от жидкой фазы.

Предлагаемый способ осуществляется следующим образом.

Разрушенные при рубке ТВЭЛов таблетки диоксида урана (UO 2 с содержанием до 5 масс.% 239 Pu) погружают в воду, содержащую нитрат железа(III), и растворяют при нагревании до 60-90°C. Полученный раствор, содержащий U(Pu), и пульпу основной соли железа, образовавшуюся при растворении, разделяют. После удаления раствора с U(Pu) осадок основной соли железа - соли железа с ПД - Мо, Tc и Ru (~95%) и частично Nd, Zr и Pd (~50%) - остается в сборнике отходов.

К отделенному раствору с U(Pu) добавляют перекись водорода и при комнатной температуре проводят осаждение пероксида уранила, с которым соосаждается и плутоний, коэффициент очистки целевого продукта от ПД около 1000. Завершив осаждение, отделяют осадок от слабокислого маточного раствора, который с оставшимся в нем ПД и нитратом Fe(III) направляют в сборник отходов с осадком основной соли. В сборник отходов также направляют раствор от промывки осадка смешанного пероксида. Далее проводят твердофазное восстановление образованного пероксида после введения гидразингидрата при перемешивании током азота при 80-90°C и получают гидратированный диоксид U(Pu). Отделенный щелочной раствор транспортируют в сборник отходов. Осадок диоксида промывается небольшим объемом 0,1М HNO 3 , затем дистиллированной водой, которые также направляются в сборник отходов. Полученный целевой продукт сушат в потоке нагретого азота при 60-90°C и выгружают из аппарата.

Слабокислые и слабощелочные водные растворы-отходы, собирающиеся по мере переработки ОЯТ в сборнике отходов, удаляют их упариванием, а находящееся в них железо осаждается в форме гидроксида совместно с катионами 2-, 3- и 4-валентных ПД. Твердый продукт из соединений железа с ПД, включенными в их фазу, является единственным отходом в заявляемом способе переработки ОЯТ. Упариваемую воду можно конденсировать и вернуть при необходимости в процесс.

Переработка ОЯТ может осуществляться в бифункциональном специальном аппарате (аппаратах), конструкция которых предусматривает наличие узла фильтрации (УФ), рубашки, способной обеспечить подачу теплоносителя и проведение процесса растворения при температуре ≤90°C в реакционной смеси, и возможности изменять на 180° пространственную ориентацию аппарата.

Процесс ведут, как правило, в двух последовательно соединенных бифункциональных аппаратах следующим образом.

Когда узел фильтрации устройства находится в верхней части, аппарат предназначен для растворения ОЯТ. Полученный раствор, содержащий U(Pu), и пульпу основной соли железа, образовавшуюся при растворении ОЯТ, разделяют. Для этого устройство переворачивают на 180°, при этом УФ находится в донной части. Фильтрацию осуществляют, подавая избыточное давление во внутренний объем аппарата, либо подключая его к вакуумной линии. После фильтрации и удаления раствора с U(Pu) устройство с осадком соли железа и ПД (Мо, Tc и Ru (~95%) и частично Nd, Zr и Pd (~50%)) поворотом на 180° переводится в положение, когда УФ расположен в верхней части, и далее аппарат выполняет функцию сборника растворов-отходов.

Фильтрованный раствор с U(Pu) подается во второй аппарат той же конструкции в позиции, когда УФ расположен в верхней части устройства. К раствору добавляют перекись водорода и проводят осаждение пероксида U(Pu) при комнатной температуре. Завершив осаждение, устройство переворачивают на 180° и проводят фильтрационное разделение через донную часть аппарата. Полученный пероксид остается на фильтре в аппарате, а маточный раствор с растворенными ПД (фактор очистки около 1000) и остаточным нитратом Fe(III) направляется в первый аппарат с осадком основной соли, ставший сборником отходов.

Устройство переворачивают в положение с УФ в верхней части и осадок пероксида с фильтра в аппарате смывают небольшим количеством воды, содержащей гидразингидрат, с образованием пульпы, в которой пероксид твердофазным восстановлением гидразином переводят в гидратированный диоксид U(Pu) при 80-90°C.

Завершив твердофазное восстановление и получив гидратированный диоксид U(Pu), переводят аппарат в положение, при котором он выполняет функцию фильтрации. Отделенный щелочной раствор направляется в первый аппарат с осадком основной соли, ставший сборником отходов. Осадок диоксида промывается небольшим объемом 0,1М HNO 3 , затем дистиллированной водой, которые также направляются в сборник отходов. Устройство с осадком гидратированного U(Pu)O 2 ·nH 2 O поворотом на 180° переводится в положения, когда УФ расположен в верхней части. Далее в аппарате проводится сушка целевого продукта при 60-90°C подачей потока азота, и по завершении сушки препарат выгружается из аппарата.

Нижеприведенные примеры иллюстрируют эффективность использования водных слабокислых растворов нитрата (хлорида) Fe(III) для растворения оксидного ОЯТ с одновременным отделением U(Pu) на этой стадии от части ПД с последующим их отделением от остатков ПД при пероксидном осаждении U(Pu) из полученного раствора. Дальнейшее твердофазное восстановительное превращение пероксида сначала в гидратированный, а потом в кристаллический диоксид U(Pu) повышает эффективность заявляемого способа.

Порошкообразный образец диоксида урана (238+235 UO 2) предварительно прокаливали при 850°C в атмосфере аргона с 20% содержанием водорода в течение 8 часов.

Таблетки или порошок керамического ядерного топлива, содержащего уран и 5 масс.% плутония, массой 132 г погружают в водный раствор нитрата железа(III) объемом 1 л с pH не менее 0,2 при концентрации Fe(NO 3) 3 в воде от 50 до 300 г/л и растворяют при нагревании до 60-90°C при мольном отношении Fe(III) к топливу как 1,5 к 1.

Контролируют величину pH и содержание урана в растворе и продолжают растворение таблеток до тех пор, пока в последовательно отобранных пробах содержание урана не изменяется. В результате процесса растворения получают раствор, содержащий преимущественно уранилнитрат и имеющий величину pH≤2, и осадок основной соли железа. Требуется не более 5-7 часов для количественного растворения взятых образцов.

Полученный нитратный раствор отделяют от пульпы фильтрацией, например, с использованием металлокерамического фильтра. Оставшийся на фильтре осадок основной соли железа промывают водой и направляют в сборник отходов вместе с промывными водами.

К слабокислому раствору отделенного уранилнитрата при температуре ≤20°C добавляют 60 мл 10% раствора двузамещенной натриевой соли ЭДТА (Трилон-Б), перемешивают 10 минут. В растворе выпадает комплексное соединение уранила белого цвета.

При перемешивании к образовавшейся суспензии добавляют порциями по 50 мл с интервалом через 1-1,5 мин 300 мл 30%-ного раствора перекиси водорода (Н 2 О 2) также при температуре ≤20°C для получения пероксида уранила, с которым также количественно соосаждается плутоний.

Отделяют фильтрацией осадок пероксида уранила от маточного раствора, который направляют в сборник отходов. Осадок промывают 0,25 л 0,05М HNO 3 , промывной раствор направляют в сборник отходов.

Промытый осадок пероксида уранила сначала переводят 10%-ным водным щелочным раствором гидразингидрата в воде в суспензию, раствор при этом имеет величину pH~10.

При перемешивании и нагревании суспензии до 80°C пероксид уранила переходит в гидратированный диоксид UO 2 ·H 2 O при твердофазном восстановлении U(VI) гидразином до U(IV).

Контроль за процессом восстановления U(VI) до U(IV) осуществляют периодическим отбором проб суспензии, содержащих не более 50 мг твердой взвеси. Осадок растворяют в смеси 4М HCl с 0,1М HF, записывают первый спектр раствора. Затем раствор обрабатывают амальгамой и записывают второй спектр этого раствора. При этом весь уран, находящийся в растворе, должен быть восстановлен полностью до U(IV). Таким образом, если первый и второй спектры совпадают, то процесс твердофазного восстановления закончен. В противном случае процедуру превращения пероксида в диоксид урана продолжают. Процесс завершается за 10-15 часов.

Полученный гидратированный диоксид урана отделяют фильтрацией от щелочного раствора (объем ~0,6 л), раствор направляют в сборник отходов. Осадок гидратированного диоксида урана промывают на фильтре 0,25 л 0,1М HNO 3 для нейтрализации щелочи, оставшейся в объеме осадка, затем таким же объемом воды, чтобы удалить следы кислоты из объема осадка с контролем pH последней промывной воды. Промывные растворы направляют в сборник отходов.

Результаты анализов маточного раствора и пероксида урана указывают, что степень осаждения урана составляет не менее 99,5%, а содержание железа в выделенном пероксиде не превышает 0,02 масс.%.

Промытый от следов щелочи осадок пероксида урана высушивают, например, нагретым до 60-90°C потоком азота и выгружают из аппарата в виде порошка.

В результате получают не менее 131,3 г диоксида урана.

В собранных в сборнике отходов водных растворах со слабощелочной реакцией выделяются остатки железа в форме аморфного гидроксида. Гетерогенную суспензию упаривают, при этом достигается практически полное удаления воды. Влажный или сухой твердый продукт, представляющий собой в основном соединения железа, является единственным отходом в заявляемом способе переработки керамического оксидного топлива с использованием растворов нитрата железа(III).

Заявляемый способ позволяет упростить переработку ОЯТ и исключить образование ЖРО в сравнении с Пурекс-процессом.

Новыми существенными и отличительными признаками заявляемого способа (в сравнении с прототипом) являются:

Использование водных слабокислых растворов нитрата Fe(III) для растворения оксидного ОЯТ, которые ранее для этого не применялись. Без существенного ухудшения растворяющей способности нитрат железа может быть заменен на хлорид Fe(III);

В отличие от прототипа отсутствует специальная стадия с введением в систему двухвалентного сульфата железа для восстановления Pu(IV) до Pu(III). В заявляемом способе при растворении оксидного уранового и смешанного топлива уран(IV) окисляется Fe(III) до урана(VI), а образующиеся при этом катионы Fe(II) восстанавливают Pu(IV) до Pu(III), и актиниды количественно переходят в раствор в виде их нитратов;

В заявляемом способе не требуется вводить кислоту для растворения ОЯТ, так как используемая среда имеет кислотность, обусловленную гидролизом нитрата железа(III), и в зависимости от его концентрации от 50 до 300 г/л величина pH в диапазоне от 1 до 0,3;

В заявляемом способе после растворения топлива кислотность получаемых растворов будет ≤0,1 М (по урану 100-300 г/л), в то время как в Пурекс-процессе образуются сильнокислые ~3М растворы HNO 3 , что с неизбежностью приводит к экстракции и образованию большого количества органических и водных ЖРО;

Низкая кислотность после растворения ОЯТ по заявляемому способу позволяет отказаться от экстракционного извлечения компонентов топлива органическими растворами, упростить организацию процесса переработки ОЯТ и устранить ЖРО в сравнении с технологией Пурекс-процесса;

В заявляемом способе процесс растворения топлива завершается получением раствора, содержащего U(Pu), и осадка основной соли железа, в количестве ~50% от исходного содержания нитрата железа(III);

Продукты деления, такие как Мо, Tc и Ru (~95%) и частично от Nd, Zr и Pd (~50%), отделяются от урана уже на стадии растворения ОЯТ и концентрируются в образовавшемся осадке основной соли железа. Это также является преимуществом заявляемого способа растворения ОЯТ в сравнении с Пурекс-процессом;

В применяемых слабокислых растворах не растворяются конструкционные материалы оболочек ТВЭЛов и фазы, образовавшиеся из ПД в матрице ОЯТ в форме светлых металлических (Ru, Rh, Мо, Tc, Nb) и серых керамических включений (Rb, Cs, Ba, Zr, Мо). Поэтому слабокислые будут менее загрязнены компонентами растворенных оболочек и ПД, в отличие от 6-8 М HNO 3 в Пурекс-процессе;

Кислотность ≤0,1 М получаемых растворов с концентрацией по урану 100-300 г/л является оптимальной для осаждения пероксидов урана(VI) и плутония(IV). Перекиси водорода отдано предпочтение, так как она переводит уран в состояние U(VI), что требуется для количественного осаждения;

При осаждении пероксида U(Pu) из раствора достигается количественное отделение U практически от всех ПД и остатков железа, находящихся в растворе (коэффициент очистки ~1000);

Новым и оригинальным решением в заявляемом способе является проведение процесса твердофазного восстановления в водной суспензии пероксида U(Pu) гидразингидратом при 90°C до гидратированного U(Pu)O 2 ×nH 2 O с последующей сушкой целевого продукта при 60-90°C и выгрузкой из аппарата,

Слабокислые и слабощелочные водные растворы отходы, накапливаемые по мере переработки ОЯТ в сборнике отходов, удаляются при упаривании, а находящееся в них железо осаждается в форме гидроксида совместно с катионами 2-, 3- и 4-валентных ПД. Твердый продукт из соединений железа с включенными в их фазу ПД является единственным отходом в заявляемом способе переработки оксидного ОЯТ.

1. Способ переработки отработавшего ядерного топлива, характеризующийся тем, что разрушенные при рубке ТВЭЛов таблетки оксидного отработавшего ядерного топлива подвергают растворению при нагревании в водном растворе нитрата железа(III) при мольном отношении железа к урану в топливе, равном 1,5-2,0:1, образовавшийся осадок основной соли железа с нерастворенными продуктами деления ядерного топлива отделяют фильтрованием, а из полученного слабокислого раствора, содержащего преимущественно уранилнитрат, осаждают пероксид уранила путем последовательной подачи в раствор при перемешивании динатриевой соли этилендиаминтетрауксусной кислоты в мольном избытке по отношению к урану, равном 10%, и 30% раствора перекиси водорода, взятой в 1,5-2-кратном мольном избытке по отношению к урану, при температуре не выше 20°C, полученную гетерогенную систему выдерживают не менее 30 минут и после отделения и промывки кислотой и водой осадок пероксида уранила подвергают твердофазному восстановлению при нагревании путем обработки его щелочным раствором гидразингидрата в воде при 2-3-кратном мольном избытке гидразина по отношению к урану, с последующим отделением полученного гидратированного диоксида урана UO 2 ·2H 2 O, промыванием его раствором HNO 3 с концентрацией 0,1 моль/л, водой и сушкой, при этом осадок основных солей железа с продуктами деления, маточный раствор стадии осаждения пероксидов с остатками продуктов деления, отходы щелочных и промывных растворов направляют в сборник отходов для их последующей переработки.

2. Способ переработки отработавшего ядерного топлива по п. 1, отличающийся тем, что растворение отработавшего ядерного топлива ведут при 60-90°C.

3. Способ переработки отработавшего ядерного топлива по п. 1, отличающийся тем, что для растворения топлива используют водный раствор нитрата железа(III) с величиной рН от 0,2 до 1,0.

4. Способ переработки отработавшего ядерного топлива по п. 1, отличающийся тем, что растворение отработавшего ядерного топлива ведут не более 5-10 часов.

5. Способ переработки отработавшего ядерного топлива по п. 1, отличающийся тем, что осадок пероксида уранила промывают раствором HNO 3 с концентрацией 0,05 моль/л.

6. Способ переработки отработавшего ядерного топлива по п. 1, отличающийся тем, что твердофазное восстановление ведут 10%-ным водным раствором гидразингидрата при рН 10.

7. Способ переработки отработавшего ядерного топлива по п. 1, отличающийся тем, что твердофазное восстановление ведут при 60-90°C в течение 10-15 часов.

8. Способ переработки отработавшего ядерного топлива по п. 1, отличающийся тем, что сушку гидратированного диоксида урана ведут при 60-90°C.

9. Способ переработки отработавшего ядерного топлива по любому из пп. 1-8, отличающийся тем, что процесс ведут в двух последовательно соединенных бифункциональных аппаратах, конструкция которых предусматривает наличие узла фильтрации и возможности изменения на 180° пространственной ориентации аппаратов, первый из которых используют для растворения и сбора отходов процесса, а второй - для осаждения пероксида уранила, его твердофазного восстановления и выделения целевого продукта.

Похожие патенты:

Изобретение касается области радиационной экологии и биогеохимии и предназначено для концентрирования Th из морской воды и определения его содержания, которое может быть использовано для измерения скорости седиментационных процессов в морских водоемах.

Заявленное изобретение относится к ядерной технике и может быть использовано при утилизации, захоронении и рефабрикации облученных изделий из бериллия, таких как, например, отражатель нейтронов ядерных и термоядерных реакторов.

Изобретение относится к атомной промышленности, а именно к устройствам для струйного растворения и размыва осадка, скопившегося на дне емкостей-хранилищ радиоактивных отходов любого уровня активности, перевода нерастворимой твердой фазы осадка во взвешенное состояние и выдачи раствора и суспензии из емкости.

Изобретение относится к атомной промышленности в части переработки радиоактивных отходов, а именно к устройствам для более полного освобождения емкостей-хранилищ от радиоактивных осадков, и может найти применение в химической, нефтехимической и других отраслях.

Заявленное изобретение относится к способам обработки радиоактивных отходов, а именно к очистке платины в виде лома технологического оборудования, и может быть использовано для очистки вторичной платины от радиоактивного заражения плутонием.

Изобретение относится к области атомной промышленности и может быть использовано для дезактивации внутренних и наружных поверхностей оборудования. В заявленном изобретении дезактивируемое оборудование помещают в дезактивирующий раствор и воздействуют на него ультразвуковыми колебаниями, при этом колебания возбуждают во всем объеме оборудования путем обеспечения жесткого акустического контакта поверхности оборудования с акустическими ультразвуковыми излучателями, причем колебания возбуждают в виде импульсов с частотой заполнения, соответствующей резонансной частоте нагруженных на оборудование излучателей.

Группа изобретений относится к методам захоронения долгоживущих радионуклидов, в том числе изотопов трансурановых элементов. Заявленный способ включает погружение, по меньшей мере, одной тепловыделяющей капсулы в скважину, образованную в геологических формациях.

Изобретение относится к ядерной технике и технологии, к дезактивации различных материалов, загрязненных радионуклидами. В заявленном способе дезактивацию проводят в две стадии: на первой стадии в разогретую до 110°C камеру дезактивации с загрязненными материалами подают пар, активированный химическими реагентами, на второй стадии охлаждают камеру дезактивации и проводят обработку дезактивируемого материала растворами органических растворителей и комплексообразователей в среде сжиженных газов или низкокипящих растворителей.

Изобретение относится к средствам для наружного употребления в качестве дезактивирующего моющего средства для очистки кожных покровов человека и наружной поверхности оборудования от загрязнений радиоактивными веществами. Описано дезактивирующее моющее средство, следующего состава: ионообменная смола Ку-1 5-20%, ионообменная смола Ку-2-8чс 5-20%, ионообменная смола Ан-31 3-10%, ионообменная смола ЭДЭ-10П 3-10%, средство моющее синтетическое порошкообразное 60-84%. Технический результат - повышение эффективности дезактивирующего моющего средства за счет повышения сорбции различных радионуклидов.

Изобретение относится к средствам детритирования. Заявленное устройство содержит печь (1) для плавления тритированных отходов, при этом указанная печь содержит топку для приема тритированных отходов и барботажное устройство для ввода гидрогенизированного барботирующего газа в топку во время плавления и обработки тритированных отходов в печи. Устройство также содержит каталитический реактор (2) с четырехполюсной мембраной для обработки газа, возникающего вследствие плавления и обработки тритированных отходов в печи; при этом указанный реактор содержит мембрану для разделения двух потоков газа, проницаемую для изотопов водорода. Заявленное устройство предусмотрено для использования в заявленном способе детритирования. Техническим результатом является предотвращение производства тритиевой воды при завершении процесса детритирования. 2 н. и 9 з.п. ф-лы, 4 ил., 1 пр.

Изобретение относится к способу обработки твердых радиоактивных отходов, образованных при переработке ядерного топлива водо-водяных реакторов и реакторов РБМК. Способ заключается в хлорировании отходов молекулярным хлором при температуре 400-500°С и разделении полученных продуктов, при этом огарок и отфильтрованные пылевидные продукты направляют в пурекс-процесс, газовую смесь с целью очистки от ниобия и других легирующих элементов обрабатывают водородом при температуре 450-550°С и пропускают через керамический фильтр, нагретый до 500-550°С, очищенный тетрахлорид циркония кристаллизуют в конденсаторе при температуре не выше 150°С. Изобретение обеспечивает минимизацию объема и перевод большей радиоактивных отходов в более безопасные категории, а также снижение затрат, связанных с захоронением отходов. 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к технологии урана, применительно к эксплуатации производств по разделению изотопов урана, и может быть использовано для очистки различных металлических поверхностей, работающих в среде гексафторида урана, от нелетучих отложений урана. Способ очистки металлических поверхностей от отложений урана включает обработку поверхностей газообразными фторирующими реагентами, содержащими ClF3 и F2 в массовом соотношении (1,7÷3,6):1, в условиях динамического течения процесса, путем циркуляции газов через отложения урана и слой фторида натрия, нагретого до 185-225°C. Изобретение обеспечивает интенсификацию процесса фторирования, селективное извлечение из газа гексафторида урана и исключение образования коррозионно-активных и легкоконденсирующихся продуктов реакций. 1 пр., 1 табл.

Изобретение относится к атомной промышленности. Cпособ обращения с реакторным графитом остановленного уран-графитового реактора включает выборку из кладки реактора. Крупные куски графита измельчают механическим способом. Измельченные куски помещают в плазмохимический реактор в качестве расходуемых электродов. Материал расходуемых электродов испаряют. В область низкотемпературной плазмы вводят окислитель. Производят закалку продуктов плазмохимической реакции. Концентрируют продукты реакции на стенках реактора. Газообразные продукты реакции извлекают из реактора. Часть газового потока закольцовывают и подают вместе с окислителем в реактор. Газообразные продукты реакции за исключением оксидов углерода улавливают скруббером. Оксиды углерода переводят в жидкую фазу и отправляют на дальнейшее захоронение. Твердый зольный остаток извлекают из плазмохимического реактора. Изобретение позволяет очистить радиоаквтивный графит от продуктов деления и активации для дальнейшего безопасного хранения. 4 з.п. ф-лы, 2 ил.

Изобретение относится к способу химической стабилизации соединения карбида урана и устройству для осуществления способа. Способ включает следующие этапы: этап повышения температуры внутри указанной камеры до температуры окисления указанного соединения на основе карбида урана в интервале приблизительно от 380°C до 550°C, причем в указанную камеру поступает инертный газ; этап изотермической окислительной обработки при указанной температуре окисления, причем указанная камера находится под парциальным давлением O2; этап контроля завершения стабилизации указанного соединения, который содержит отслеживание количества поглощенного молекулярного кислорода и/или диоксида углерода или выделенных диоксида или моноксида углерода до достижения входного заданного значения указанного количества молекулярного кислорода, минимального порогового значения указанного количества диоксида углерода или минимальных пороговых значений диоксида углерода и моноксида углерода. Техническим результатом является возможность безопасного, надежного управляемого и ускоренного решения комплексной проблемы стабилизации соединений карбида урана с формулой UCx + yC, где число x может быть больше или равно 1, а действительное число y больше нуля. 2 н. и 11 з.п. ф-лы, 8 ил.

Группа изобретений относится к способу и устройству для уменьшения содержания радиоактивного материала в объекте, содержащем радиоактивный материал, до безопасного для среды обитания уровня. Способ уменьшения содержания радиоактивного материала в объекте, содержащем радиоактивный материал, до безопасного для среды обитания уровня содержит объект, который является, по меньшей мере, объектом, выбранным из группы, состоящей из организма, осадка сточных вод, почвы и золы мусоросжигательных установок. Объект подвергают стадии нагрева/нагнетания давления/сброса давления, выбранной из группы, состоящей из этапа нагрева объекта в состоянии, когда температура меньше или равна критической температуре воды, водорастворимой жидкости или смеси воды и водорастворимой жидкости, и давление больше или равно давлению насыщенного пара водосодержащей жидкости. Имеется также обрабатывающее устройство для уменьшения содержания радиоактивного материала в объекте. Группа изобретений позволяет удалить радиоактивный материал из объекта, после обработки объект может быть возращен в среду обитания. 2 н. и 16 з.п. ф-лы, 5 ил., 1 табл., 13 пр.

Изобретение относится к способам химической дезактивации металлов с радиоактивным загрязнением. Способ дезактивации поверхностно загрязненных изделий из металлических сплавов или их фрагментов заключается в нанесении на дезактивируемую поверхность порошкового реагента, в котором по меньшей мере 80% частиц имеют размер менее 1 мкм, содержащего калий, натрий и серу, последующем нагреве поверхности, ее охлаждении и очистке от образовавшейся окалины. Порошковый реагент наносится на сухую поверхность. На обработанную реагентом поверхность наносят слой синтетического лака с температурой воспламенения 210-250°С. Изобретение позволяет повысить эффективность процесса дезактивации поверхностно загрязненных радионуклидами изделий из металлических сплавов или их фрагментов за счет увеличения контакта реагента с радионуклидами, находящимися в открытых порах, трещинах и других дефектах поверхности, при одновременном повышении его экономичности за счет уменьшения расхода порошка реагента. 3 з.п. ф-лы, 3 табл., 2 пр.

Изобретение относится к технологии утилизации и может быть использовано при утилизации крупногабаритных плавучих объектов с ядерной энергетической установкой. После вывода из эксплуатации и принятия решения об утилизации производят выгрузку отработавшего ядерного топлива из реакторов, демонтируют надстройку, выгружают часть оборудования, формируют реакторных блок, разгружают объект до состояния, при котором плоскость ватерлинии объекта оказывается ниже сформированного реакторного блока, выполняют технологический вырез в борту объекта, монтируют выкатное устройство, удаляют реакторный блок с помощью выкатного устройства. Одновременно компенсируют уменьшение массы объекта приемом на объект балласта. Затем подготавливают реакторный блок к длительному хранению, а объект утилизируют способом, установленным проектом утилизации. Технический результат - утилизация крупногабаритного плавучего объекта с ядерной энергетической установкой без использования крупнотоннажного плавучего передаточного док-понтона. 3 ил.

Группа изобретений относится к ядерной физике, к технологии обработки твердых радиоактивных отходов. Способ очистки облученных графитовых втулок уран-графитового реактора включает их нагрев, обработку газом, перевод примесей в газовую фазу, охлаждение углеродного материала. Облученную графитовую втулку нагревают потоком низкотемпературной плазмы в первой температурной зоне проточной камеры в атмосфере инертного газа до температуры выше 3973K. Образовавшуюся газовую смесь перемещают во вторую температурную зону проточной камеры для осаждения углерода, где поддерживают температуру в интервале от 3143K до 3973K. Неосажденную газовую смесь перемещают в третью температурную зону проточной камеры, где ее охлаждают до температуры ниже 940K и осаждают технологические примеси. Остаточный инертный газ возвращают в первую температурную зону проточной камеры, процесс продолжают до полного испарения графитовой втулки. Имеется также устройство для очистки облученных графитовых втулок уран-графитового реактора. Группа изобретений позволяет уменьшить время очистки графита облученных графитовых втулок уран-графитового реактора. 2 н.п. ф-лы, 4 ил.

Изобретение относится к средствам переработки отработавшего ядерного топлива. В заявленном способе разрушенные при рубке ТВЭЛов таблетки оксидного отработавшего ядерного топлива подвергают растворению при нагревании в водном растворе нитрата железа при мольном отношении железа к урану в топливе, равном 1,5-2,0:1, образовавшийся осадок основной соли железа с нерастворенными продуктами деления ядерного топлива отделяют фильтрованием, а из полученного слабокислого раствора осаждают пероксид уранила путем последовательной подачи в раствор при перемешивании динатриевой соли этилендиаминтетрауксусной кислоты. Далее полученную гетерогенную систему выдерживают не менее 30 минут и после отделения и промывки кислотой и водой осадок пероксида уранила подвергают твердофазному восстановлению при нагревании путем обработки его щелочным раствором гидразингидрата в воде при 2-3-кратном мольном избытке гидразина по отношению к урану, с последующим отделением полученного гидратированного диоксида урана UO2·2H2O, промыванием его раствором HNO3 с концентрацией 0,1 мольл, водой и сушкой. При этом осадок основных солей железа с продуктами деления, маточный раствор стадии осаждения пероксидов с остатками продуктов деления, отходы щелочных и промывных растворов направляют в сборник отходов для их последующей переработки. Техническим результатом является повышение экологической безопасности и уменьшение количества отходов. 8 з.п. ф-лы.