Медико-тактическая характеристика поражающих факторов современных видов оружия. Поражающие факторы ядерного взрыва и действие

В процессе ядерного (термоядерного) взрыва образуется поражающие факторы, ударная волна, световое излучение, проникающая радиация, радиоактивное заражение местности и объектов, а также электромагнитный импульс.

Воздушная ударная волна ядерного взрыва

Воздушной ударной волной называется резкое сжатие воздуха, распространяющееся в атмосфере со сверхзвуковой скоростью. Она является основным фактором, вызывающим разрушения и повреждения вооружения, боевой техники, инженерных сооружений и местных предметов.

Воздушная ударная волна ядерного взрыва образуется в результате того, что расширяющаяся светящаяся область сжимает окружающие её слои воздуха, и это сжатие, передаваясь от одного слоя атмосферы к другому, распространяющееся со скоростью, значительно превышающей скорость звука и скорость поступательного движения частиц воздуха.

Ударная волна проходит первые 1000 м за 2 с, 2000 м за 5 с, 3000 м за 8 с.

Рис.5. Изменение давления в точке на местности в зависимости от времени действия ударной волны на окружающие предметы: 1 - фронт ударной волны; 2 - кривая изменения давления

Повышение давления воздуха во фронте ударной волны над атмосферным давлением, так называемое избыточное давление во фронте ударной волны Рф измеряется в Паскалях (1Па=1н/м 2 , в барах (I бар=10 5 Па) или в килограммах силы на см 2 (1кгс/см 2 =0,9807 бар). Оно характеризует силу поражающего действия ударной волны и является одним из её основных параметров.

После прохода фронта ударной волны давление воздуха в данной точке быстро падает, но в течение некоторого времени продолжает оставаться выше атмосферного. Время, в течение которого давление воздуха превышает атмосферное, получило название длительности фазы сжатия ударной волны (r+). Она также характеризует поражающее действие ударной волны.

В зоне сжатия частицы воздуха движутся вслед за фронтом ударной волны со скоростью меньшей, чем скорость движения фронта ударной волны примерно на 300 м/с. На расстояниях от центра взрыва, где ударная волна обладает поражающим действием (Рф0,2-0,3бар), скорость движения воздуха в ударной волне превышает 50 м/с. При этом суммарное поступательное перемещение частиц воздуха в ударной волне может достигать нескольких десятков и даже сотен метров. В следствие этого в зоне сжатия возникает сильное давление скоростного (ветрового) напора, обозначается Рск.

В конце фазы сжатия давление воздуха в ударной волне становится ниже атмосферного, т.е. за фазой сжатия следует фаза разряжения.

В результате воздействия ударной волны человек может получить контузии и травмы различной степени тяжести, которые вызываются как всесторонним обжатием тела человека избыточным давлением в фазе сжатия ударной волны, так и действием скоростного напора и давлением отражения. Кроме того, в результате действия скоростного напора ударная волна по пути своего движения подхватывает и несет с большой скоростью обломки разрушенных зданий и сооружений и сучья деревьев, мелкие камни и другие предметы, способные наносить поражения открыто расположенным людям.

Непосредственно поражение людей избыточным явлением ударной волны, давлением скоростного напора и давлением отражения называется первичным, а поражения, вызванные действием различных обломков - косвенным или вторичным.

Таблица 4. Расстояния, на которых наблюдается выход из строя личного состава от действия ударной волны при открытом расположении на местности в положении стоя, км

Приведенная высота взрыва, м/т 1/3

Мощность взрыва, кт

На распространение ударной волны и ее разрушающее и поражающее действие существенное влияние могут оказать рельеф местности и лесные массивы в районе взрыва, а также метеоусловия.

Рельеф местности может усилить или ослабить действие ударной волны. Так. на передних (обращенных в сторону взрыва) склонах возвышенностей и в лощинах, расположенных вдоль направления движения волны, давление выше, чем на равнинной местности. При крутизне склонов (угол наклона склона к горизонту) 10-15 давление на 15-35% выше, чем на равнинной местности; при крутизне склонов15-30° давление может увеличиться в 2 раза.

На обратных по отношению к центру взрыва склонах возвышенностей, а также в узких лощинах и оврагах, расположенных под большим углом к направлению распространения волны, возможно уменьшение давления волны и ослабление ее поражающего действия. При крутизне склона 15-30° давление уменьшается в 1,1-1,2 раза, а при крутизне 45-60° - в 1,5-2 раза.

В лесных массивах избыточное давление на 10-15% больше, чем на открытой местности. Вместе с тем в глубине леса (на расстоянии 50-200 м и более от опушки в зависимости от густоты леса) наблюдается значительное снижение скоростного напора.

Метеорологические условия оказывают существенное влияние только на параметры слабой воздушной ударной волны, т.е. на волны с избыточным давлением не более 10 кПа.

Так, например, при воздушном взрыве мощностью 100 кт это влияние будет проявляться на расстоянии 12...15 км от эпицентра взрыва. Летом в жаркую погоду характерно ослабление волны по всем направлениям, а зимой - ее усиление, особенно в направлении ветра.

Дождь и туман также могут заметно повлиять на параметры ударной волны, начиная с расстояний, где избыточное давление волны200-300 кПа и менее. Например, где избыточное давление ударной волны при нормальных условиях 30 кПа и менее, в условиях среднего дождя давление уменьшается на 15%, и сильного (ливневого) - на30%. При взрывах в условиях снегопада давление в ударной волне снижается весьма незначительно и его можно не учитывать.

Защита личного состава от ударной волны достигается уменьшением воздействия на человека избыточного давления и скоростного напора. Поэтому укрытие личного состава за холмами и насыпями в оврагах, выемках и молодых лесах, использование фортификационных сооружений, танков, БМП, БТР, снижает степень его поражения ударной волной.

Если принять, что при воздушном ядерном взрыве безопасное расстояние для незащищённого человека доставляет несколько км, то личный состав, находящийся в открытых фортификационных сооружениях (траншеи, хода сообщения, открытые щели), не будет поражен ужена удалении 2/3 от безопасного расстояния. Перекрытые щели и траншеи уменьшают радиус поражающего действия в 2 раза, а блиндажи - в 3 раза. Личный состав, находящийся в подземных прочных сооружениях на глубине более 10 м, не поражается даже в том случае если это сооружение находится в эпицентре воздушного взрыва. Радиус поражения техники, расположенной в окопах и котлованных укрытиях, в 1,2-1,5раза меньше, чем при открытом расположении.

Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, сооружения и различные материальные средства.

Основными поражающими факторами ядерного взрыва являются:

Ударная волна;

Световое излучение;

Проникающая радиация;

Радиоактивное заражение местности;

Электромагнитный импульс;

При этом образуется растущий огненный шар диаметром до нескольких сотен метров, видимый на расстоянии 100 - 300 км. Температура светящейся области ядерного взрыва колеблется от миллионов градусов в начале образования до нескольких тысяч в конце его и длится до 25 сек. Яркость светового излучения в первую секунду (80-85% световой энергии) в несколько раз превосходит яркость Солнца, а образовавшийся огненный шар при ядерном взрыве виден на сотни километров. Остальное количество (20-15%) в последующий отрезок времени от 1 - 3 сек.

Наибольшее поражающее значение имеют инфракрасные лучи, вызывающие мгновенные ожоги открытых участков тела и ослепление. Нагрев может быть настолько сильным, что возможно обугливание или воспламенение различного материала и растрескивание или оплавление строительных материалов, что может приводить к огромным пожарам в радиусе несколько десятков километров. Люди которые подверглись воздействию огненного шара от «Малыша» г. Хиросима на расстоянии до 800 метров были сожжены настолько, что превратились в пыль.

При этом действие светового излучения ядерного взрыва эквивалентно массированному применению зажигательного оружия, которое рассматривается в пятом разделе.

Кожный покров человека также поглощает энергию светового излучения, за счет чего может нагреваться до высокой температуры и получать ожоги. В первую очередь ожоги возникают на открытых участках тела, обращенных в сторону взрыва. Если смотреть в сторону взрыва незащищенными глазами, то возможно поражение глаз, приводящее к ослеплению, полной потере зрения.

Ожоги, вызываемые световым излучением, не отличаются от обычных, вызываемых огнем или кипятком, они тем сильнее, чем меньше расстояние до взрыва и чем больше мощность боеприпаса. При воздушном взрыве поражающее действие светового излучения больше, чем при наземном той же мощности.

Поражающее действие светового излучения характеризуется световым импульсом. В зависимости от воспринятого светового импульса ожоги делятся на три степени. Ожоги первой степени проявляются в поверхностном поражении кожи: покраснении, при пухлости, болезненности. При ожогах второй степени на коже появляются пузыри. При ожогах третьей степени наблюдается омертвление кожи и образование язв.

При воздушном взрыве боеприпаса мощностью 20 кт и прозрачности атмосферы порядка 25 км ожоги первой степени будут наблюдаться в радиусе 4,2 км от центра взрыва; при взрыве заряда мощностью 1 Мт это расстояние увеличится до 22,4 км. ожоги второй степени проявляются на расстояниях 2,9 и 14,4 км и ожоги третьей степени на расстояниях 2,4 и 12,8 км соответственно для боеприпасов мощностью 20 кт и 1Мт.

Световое излучение способно вызвать массовые пожары в населенных пунктах, в лесах, степях, на полях.

Защитить от светового излучения могут любые преграды, не пропускающие свет: укрытие, тень дома и т. Интенсивность светового излучения сильно зависит от метеорологических условий. Туман, дождь и снег ослабляют его воздействие, и наоборот, ясная и сухая погода благоприятствует возникновению пожаров и образованию ожогов.

Для оценки ионизации атомов среды, а следовательно, и поражающего действия проникающей радиации на живой организм введено понятие дозы облучения (или дозы радиации), единицей измерения которой является рентген (р). Дозе радиации 1 р. соответствует образование в одном кубическом сантиметре воздуха приблизительно 2 миллиардов пар ионов. В зависимости от дозы излучения различают четыре степени лучевой болезни.

Первая (легкая) возникает при получении человеком дозы от 100 до 200 р. Она характеризуется: рвоты нет или позже 3 часа, однократно, общей слабостью, легкой тошнотой, кратковременная головная боль, сознание ясное, головокружением, повышением потливости, наблюдается периодическое повышение температуры.

Вторая (средняя) степень лучевой болезни развивается при получении дозы 200 - 400 р; в этом случае признаки поражения: рвота через 30 мин - 3 часа, 2 раза и более, постоянная головная боль, сознание ясное, расстройство функций нервной системы, повышение температуры, более тяжелое недомогание, желудочно-кишечное расстройство проявляются более резко и быстрее, человек становится не дееспособным. Возможны смертельные исходы (до 20%).

Третья (тяжелая) степень лучевой болезни возникает при дозе 400 - 600 р. Характеризуется: сильная и многократная рвота, постоянной головной болью, временами сильная, тошнотой, отмечают тяжелое общее состояние, иногда потерю сознания или резкое возбуждение, кровоизлияния в слизистые оболочки и кожу, некроз слизистых оболочек в области десен, температура может превышать 38 - 39 градусов, головокружением и другими недомоганиями; Ввиду ослабления защитных сил организма появляются различные инфекционные осложнения нередко приводящие к смертельному исходу. Без лечения болезнь в 20 - 70% случаев заканчивается смертью, чаще от инфекционных осложнений или от кровотечений.

Крайне тяжелая, при дозах свыше 600 р.первичные признаки проявляются: сильная и многократная рвота через 20 - 30 мин до 2 и более дней, упорная сильная головная боль, сознание может быть спутанным, без лечения обычно заканчивается смертью в течении до 2 недель.

В начальном периоде ОЛБ частыми проявлениями является тошнота, рвота, только в тяжелых случаях понос. Общая слабость, раздражительность, лихорадка, рвота являются проявлением как облучения головного мозга, так и общей интоксикации. Важными признаками лучевого воздействия является гиперемия слизистых оболочек и кожи, особенно в местах высоких доз облучения, учащение пульса, повышение, а затем снижение артериального давления вплоть до коллапса, неврологические симптомы (в частности, нарушение координации, менингеальные знаки). Выраженность симптомов корректируется с дозой облучения.

Доза облучения может быть однократной и многократной. По данным иностранной печати доза однократного облучения до 50 р (полученная за время до 4 суток) практически безопасна. Многократной называется доза полученная за время свыше 4 суток. Однократное облучение человека дозой 1 Зв и более называют острым облучением.

Каждый из этих более чем 200 изотопов имеет свой период полураспада. К счастью, большая часть продуктов деления — короткоживущие изотопы, т. е. имеют периоды полураспада, измеряемые секундами, минутами, часами или днями. А это значит, что спустя непродолжительное время (порядка 10-20 периодов полураспада) короткоживущий изотоп распадается почти полностью и его радиоактивность не будет представлять практической опасности. Так, период полураспада теллура -137 равен 1 мин, т. е. через 15-20 мин от него почти ничего не останется.

В чрезвычайной обстановке важно знать не столько периоды полураспада каждого изотопа, сколько время, в течение которого уменьшается радиоактивность всей суммы радиоактивных продуктов деления. Существует очень простое и удобное правило, которое позволяет судить о скорости уменьшения радиоактивности продуктов деления во времени.

Это правило называется правилом «семь — десять». Смысл его заключается в том, что если время, прошедшее после взрыва ядерной бомбы, увеличивается в семь раз, то активность продуктов деления уменьшается в 10 раз. Например, уровень загрязнения местности продуктами распада через час после взрыва ядерного боеприпаса составляет 100 условных единиц. Через 7 часов после взрыва (время увеличилось в 7 раз) уровень загрязнения уменьшится до 10 единиц (активность уменьшилась в 10 раз), через 49 часов — до 1 единицы и т. д.

За первые сутки после взрыва активность продуктов деления уменьшается почти в 6000 раз. И в этом смысле время оказывается нашим большим союзником. Но с течением времени спад активности идет все медленнее. Через сутки после взрыва для уменьшения активности в 10 раз потребуется уже неделя, через месяц после взрыва — 7 месяцев и т. д. Однако следует отметить, что спад активности по правилу «семь — десять» происходит в первые полгода после взрыва. В последующее время спад активности продуктов деления идет быстрее, чем по правилу «семь — десять».

Количество продуктов деления, образующихся при взрыве ядерной бомбы, в весовом выражении невелико. Так, на каждую тысячу тонн мощности взрыва образуется около 37 г продуктов деления (37 кг на 1 Мт). Продукты деления, попадая в организм в значительных количествах, могут вызвать высокий уровень облучения и соответствующие изменения состоянии здоровья. Количество продуктов деления, образующихся при взрыве, чаще оценивают не в весовых единицах, а в единицах радиоактивности.

Как известно, единицей радиоактивности - является кюри. Одно кюри - это такое количество радиоактивного изотопа, которое дает 3,7-10 10 распадов в секунду -(37 млрд. распадов в секунду). Чтобы представить величину этой единицы, (Напомним, что активность 1 г. радия составляет приблизительно 1 кюри, а допустимым количеством радия в человеческом организме является 0,1 мкг этого элемента.

Перейдя от весовых единиц к единицам радиоактивности, можно сказать, что при взрыве ядерной бомбы мощностью в 10 млн. т образуются продукты распада общей активностью порядка 10"15 кюри (1000000000000000 кюри). Эта активность постоянно, а в первое время очень быстро, уменьшается, причем ослабление ее в течение первых суток после взрыва превышает 6000 раз.

Радиоактивные осадки выпадают на больших расстояниях от места ядерного взрыва (значительное заражение местности может быть на расстоянии порядка нескольких сотен километров). Они представляют собой аэрозоли (частички, взвешенные в воздухе). Размеры аэрозолей самые разные: от крупных частиц с диаметром в несколько миллиметров до мельчайших, не видимых глазом частиц, измеряемых десятыми, сотыми и еще меньшими долями микрона.

Большая часть радиоактивных осадков (около 60% пря наземном взрыве) выпадает в первые сутки после взрыва. Это местные осадки. В последующем же внешняя среда может дополнительно загрязняться тропосферными или стратосферными осадками.

В зависимости от «возраста» осколков (г. е. времени, прошедшего с момента ядерного взрыва) меняется и их изотопный состав, В «молодых» продуктах деления основная активность представлена короткоживущими изотопами. Активность «старых» продуктов деления представлена главным образом долгоживущими изотопами, так как к этому времени коротко-живущие изотопы уже распались, превратившись в стабильные. Поэтому число изотопов продуктов деления со временем постоянно сокращается. Так, через месяц после взрыва остается всего 44, а через год — 27 изотопов.

Соответственно возрасту осколков меняется и удельная ак-тивность каждого изотопа в общей смеси продуктов распада. Так, изотоп стронция-90, имеющий значительный период по-лураспада (Т1/2 = 28,4 года) и образующийся при взрыве в незначительном количестве, «переживает» коротко живущие изотопы, в связи с чем его удельная активность постоянно увеличивается.

Таким образом, удельная активность стронция-90 увеличивается за 1 год с 0,0003% до 1,9%. Если выпадет значительное количество радиоактивных осадков, то наиболее тяжелая обстановка будет в течение первых двух недель после взрыва. Данное положение хорошо иллюстрируется следующим примером: если через час после взрыва мощность дозы гамма-излучения от радиоактивных осадков достигнет 300 рентген в час (р/час), то суммарная доза облучения (без защиты) составит в течение года 1200 р, из них 1000 р (т. е. почти всю годовую дозу облучения) человек получит за первые 14 дней. Поэтому наибольшие уровни заражения внешней среды радиоактивными осадками будут именно в эти две недели.

Основная часть долгоживущих изотопов сосредоточена в радиоактивном облаке, которое образуется после взрыва. Высота поднятия облака для боеприпаса мощностью 10 кт равна 6 км, для боеприпаса мощностью 10 Мт она составляет 25 км.

Электромагнитный импульс — это кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма-лучей и нейтронов , испускаемых при этом с атомами окружающей среды. Следствием его воздействия могут быть перегорание и пробои отдельных элементов радиоэлектронной и электротехнической аппаратуры, электрических сетей.

Наиболее надежным средством защиты от всех поражающих факторов ядерного взрыва являются защитные сооружения. На открытой местности и в поле можно для укрытия использовать прочные местные предметы, обратные скаты высот и складки местности.

При действиях в зонах заражения для защиты органов дыхания, глаз и открытых участков тела от радиоактивных веществ следует использовать специальные защитные средства.

ХИМИЧЕСКОЕ ОРУЖИЕ

Характеристика и боевые свойства

Химическим оружием называют отравляющие вещества и средства, используемые для поражения человека.

Основу поражающего действия химического оружия составляют отравляющие вещества. Они обладают настолько высокими токсическими свойствами, что некоторые зарубежные военные специалисты приравнивают 20 кг нервно - паралитических отравляющих веществ по эффективности поражающего действия к ядерной бомбе, эквивалентной 20 Мт тротила. В обоих случаях может возникнуть очаг поражения площадью в 200-300 км.

По своим поражающим свойствам ОВ отличаются от других боевых средств:

Они способны проникать вместе с воздухом в различные сооружения, в боевую технику и наносить поражения находящимся в них людям;

Они могут сохранять свое поражающее действие в воздухе, на местности и в различных объектах на протяжении некоторого, иногда довольно продолжительного времени;

Распространяясь в больших объемах воздуха и на больших площадях, они наносят поражение всем людям, находящимся в сфере их действия без средств защиты;

Пары ОВ способны распространяться по направлению ветра на значительные расстояния от районов непосредственного применения химического оружия.

Химические боеприпасы различают по следующим характеристикам:

Стойкости применяемого ОВ;

Характеру физиологического воздействия ОВ на организм человека;

Средствам и способам применения;

Тактическому назначению;

Быстроте наступающего воздействия;

1. Исторические данные

В 1896 году французским физиков Антуаном Беккерелем было открыто явление радиоактивного излучения. Оно положило начало эре излучения и использования ядерной энергии. Говоря о ней, выдающийся русский ученый В.И. Вернадский подчеркивал: “ С надеждой и опасением всматриваемся мы в нашего союзника и защитника”. И его опасения подтвердились – вначале появились не ледоколы, не атомные электростанции, не космические корабли, а оружие чудовищной разруши

тельной силы. Его создали в 1945 году бежавшие перед началом второй мировой войны из фашистской Германии в США и поддержанные правительством этой страны физики под руководством американского ученого Роберта Оппенгеймера.

Многие ошибаются, думая, что первый ядерный взрыв был произведён в Хиросиме. На самом деле испытание было произведено в США 16 июля 1945 года. Это произошло в пустынном районе близ города Аламогордо (штат Нью Мексико). На верхней платформе специально построенной 33-метровой стальной вышки была взорвана атомная бомба. По приблизительным оценкам специалистов при этом выделилась энергия, эквивалентная энергии взрыва не менее 15–20 тысяч тонн тринитротолуола.

Стальная конструкция вышки испарилась. На ее месте образовалась воронка диаметром 37 метров и глубиной 1.8 метра. Она являлась центром простиравшегося на большое расстояние кратера. В окружности 370 км была уничтожена вся растительность. Находившаяся на расстоянии 150 метров от точки взрыва стальная труба диаметром 10 см и высотой 5 метров тоже испарилась. Прочная стальная конструкция высотой 21 метр, подобная части каркаса 15–20 этажного дома, находившаяся на расстоянии 500 метров, была вырвана из бетонного основания, перекручена и разлетелась на части.

Вспышка от взрыва на расстоянии 32 км казалась в несколько раз ярче, чем солнечный свет в полдень. После нее образовался огненный шар, существовавший несколько секунд. Свет от него был виден в населенных пунктах на расстоянии до 290 км. Звук от взрыва был слышен на таком же расстоянии. В одном случае стекла в зданиях были выбиты ударной волной даже на расстоянии 200 км.

В результате взрыва образовалось гигантское облако сферической формы. Клубясь, оно устремилось вверх, приобрело форму гигантского гриба. Облако состояло из нескольких тонн пыли, поднятой с поверхности земли, паров железа и большого количества радиоактивных веществ, образовавшихся при цепной реакции деления ядерного заряда. Пыль и радиоактивные частицы осели на огромной площади, небольшое их количество было обнаружено на удалении 190 км от эпицентра взрыва. Испытания бомбы показали, что новое оружие готово к боевому применению.

2. Ядерное оружие

Ядерное оружие – это оружие массового поражения взрывного действия.

Поражающим фактором ядерного взрыва являются:

* ударная волна

* световое излучение

* проникающая радиация

* радиоактивное заражение

1. Ударная волна – основной поражающий фактор. Большинство разрушений и повреждений зданий и сооружений, а также массовые поражения людей обусловлены, как правило, ее воздействием.

Ударная волна представляет собой область резкого сжатия воздушной среды, распространяющейся во все стороны от места взрыва со сверхзвуковой скоростью (более 331 м/с). Передняя граница сжатого слоя воздуха называется фронтом ударной волны. Под воздействием ударной волны люди могут получить легкие поражения (ушибы и контузию); поражения средней тяжести, требующие госпитализации (потеря сознания, повреждение органов слуха, вывихи конечностей, кровотечение из носа и ушей); тяжелые травмы (сильные контузии всего организма, переломы костей, поражение внутренних органов); крайне тяжелые поражения, часто со смертельным исходом.

2. Световое излучение – это поток лучистой энергии, включающий видимые, ультрафиолетовые и инфракрасные лучи. Оно образуется раскаленными продуктами ядерного взрыва и раскаленным воздухом, распространяется практически мгновенно и длится, в зависимости от мощности ядерного взрыва, до 20 секунд.

Сила светового излучения такова, что оно способно вызывать ожоги, поражение глаз (временную слепоту), возгорание горючих материалов и объектов.

3. Проникающая радиация – это поток испускаемых при ядерном взрыве гамма – лучей и нейтронов.

Воздействие данного поражающего фактора на все живые существа (в том числе и на человека) состоит в ионизации атомов и молекул организма, что приводит к нарушению жизненных функций отдельных органов, поражению костного мозга, развитию лучевой болезни.

4. Радиоактивное заражение местности происходит за счет радиоактивных веществ, выпадающих из облака ядерного взрыва. Опасность поражения людей в районах радиоактивного заражения местности может сохранять

ся продолжительное время – дни, недели и даже месяцы. Заражение местности зависит от вида взрыва. Наиболее опасен наземный взрыв. Здесь сильна так называемая наведенная активность. Она увеличивается за счет вовлечения частиц грунта в облако взрыва, и вместе с осколками деления они вызывают радиоактивное заражение за пределами района взрыва. Масштабы и степень заражения местности зависит от количества, мощности и вида ядерного взрыва, метеорологических условий, от скорости и направления ветра. Например, при взрыве мощностью в 1 мегатонну испаряется и вовлекается в огненный шар около 20 тысяч тонн грунта. Образуется огромное облако, состоящее из большого количества радиоактивных частиц. Облако перемещается. Радиоактивные частицы, выпадая из облака на землю, образуют зону радиоактивного заражения. Этот процесс длится в течение 10–20 часов после взрыва.

Второе ядерное испытание было уже произведено на людях в конце второй мировой войны.

Утром 6 августа 1945 года над городом Хиросима появились три американских самолета, в числе которых американский бомбардировщик Б–29, несший на борту атомную бомбу мощностью 12,5 кт с названием “Малыш”. Набрав заданную высоту, самолет произвел бомбометание. Образовавшийся после взрыва огненный шар имел в диаметре около 100 м, температура в его центре достигала 3000 градусов по Цельсию. Давление в месте взрыва приближалось к 7 m\м2

Дома со страшным грохотом рушились и в радиусе 2 км загорались. Люди вблизи эпицентра в буквальном смысле испарились. Те же, кто остался в живых, но получил тяжелые ожоги, устремились к воде и погибали в ужасных мучениях. Через 5 минут над центром города повисла темно- серая туча диаметром 5 км. Из нее вырвалось белое облако, быстро достигшее высоты 12 км и приобретшее форму гриба. Позднее на город опустилось облако грязи, пыли и пепла с радиоактивными изотопами, обрекая население на новые жертвы. У многих начали появляться первые симптомы острой лучевой болезни. Хиросима горела два дня. Люди, прибывшие на помощь ее жителям, еще не знали, что вступили в зону радиоактивного заражения и это будет иметь роковые последствия. Радиация угрожала не только их кожному покрову, но и организму при вдыхании загрязненного воздуха, а также попадая внутрь с водой, пищей и через открытые раны.


Введение

1.1 Ударная волна

1.2 Световое излучение

1.3 Радиация

1.4 Электромагнитный импульс

2. Защитные сооружения

Заключение

Список литературы


Введение


Ядерным называется оружие, поражающее действие которого обусловлено энергией, выделяющейся при ядерных реакциях деления и синтеза. Оно является самым мощным видом оружия массового поражения. Ядерное оружие предназначено для массового поражения людей, уничтожения или разрушения административных и промышленных центров, различных объектов, сооружений и техники.

Поражающее действие ядерного взрыва зависит от мощности боеприпаса, вида взрыва, типа ядерного заряда. Мощность ядерного боеприпаса характеризуется тротиловым эквивалентом. Единица ее измерения - т, кт, Мт.

При мощных взрывах, характерных для современных термоядерных зарядов наибольшее разрушение оказывает ударная волна, а далее всего распространяется световое излучение.


1. Поражающие факторы ядерного оружия


При ядерном взрыве действуют пять поражающих факторов: ударная волна, световое излучение, радиоактивное заражение, проникающая радиация и электромагнитный импульс. Энергия ядерного взрыва распределяется примерно так: 50% расходуется на ударную волну, 35% - на световое излучение, 10% - на радиоактивное заражение, 4% - на проникающую радиацию и 1% - на электромагнитный импульс. Высокая температура и давление вызывают мощную ударную волну и световое излучение. Взрыв ядерного боеприпаса сопровождается выходом проникающей радиации, состоящей из потока нейтронов и гамма квантов. Облако взрыва содержит огромное количество радиоактивных продуктов - осколков деления ядерного горючего. По пути движения этого облака радиоактивные продукты из него выпадают, в результате чего происходит радиоактивное заражение местности, объектов и воздуха. Не равномерное движение электрических зарядов в воздухе под воздействием ионизирующих излучений приводит к образованию электромагнитного импульса. Так формируются основные поражающие факторы ядерного взрыва. Явления, сопровождающие ядерный взрыв, в значительной мере зависят от условий и свойств среды, в которой он происходит.


1.1 Ударная волна


Ударная волна - это область резкого сжатия среды, которая распространяется в виде сферического слоя во все стороны от места взрыва со сверхзвуковой скоростью. В зависимости от среды распространения различают ударную волну в воздухе, в воде или грунте.

Воздушная ударная волна - это зона сжатого воздуха, распространяющаяся от центра взрыва. Ее источник - высокое давление и температура в точке взрыва. Основные параметры ударной волны, определяющие ее поражающее действие:

·избыточное давление во фронте ударной волны, ?Рф, Па (кгс/см2);

·скоростной напор, ?Рск, Па (кгс/см2).

Вблизи центра взрыва скорость распространения ударной волны в несколько раз превышает скорость звука в воздухе. С увеличением расстояния от места взрыва скорость распространения волны быстро падает, а ударная волна ослабевает. Воздушная ударная волна при ядерном взрыве средней мощности проходит примерно 1000 метров за 1,4 секунды, 2000 метров - за 4 секунды, 3000 метров - за 7 секунд, 5000 метров - за 12 секунд.

Перед фронтом ударной волны давление в воздухе равно атмосферному Р0. С приходом фронта ударной волны в данную точку пространства давление резко (скачком) увеличивается и достигает максимального, затем, по мере удаления фронта волны, давление постепенно снижается и через некоторый промежуток времени становится равным атмосферному. Образовавшийся слой сжатого воздуха называют фазой сжатия. В этот период ударная волна обладает наибольшим разрушающим действием. В дальнейшем, продолжая уменьшаться, давление становится ниже атмосферного и воздух начинает двигаться в направлении, противоположном распространению ударной волны, то есть к центру взрыва. Эта зона пониженного давления называется фазой разрежения.

Непосредственно за фронтом ударной волны, в области сжатия, движутся массы воздуха. Вследствие торможения этих масс воздуха, при встрече с преградой возникает давление скоростного напора воздушной ударной волны.

Скоростной напор ? Рск - это динамическая нагрузка, создаваемая потоком воздуха, движущимся за фронтом ударной волны. Метательное действие скоростного напора воздуха заметно сказывается в зоне с избыточным давлением более 50 кПа, где скорость перемещения воздуха более 100 м/с. При давлениях менее 50 кПа влияние ?Рск быстро падает.

Основные параметры ударной волны, характеризующие ее разрушающее и поражающее действие: избыточное давление во фронте ударной волны; давление скоростного напора; продолжительность действия волны - длительность фазы сжатия и скорость фронта ударной волны.

Ударная волна в воде при подводном ядерном взрыве качественно напоминает ударную волну в воздухе. Однако на одних и тех же расстояниях давление во фронте ударной волны в воде гораздо больше, чем в воздухе, а время действия - меньше.

При наземном ядерном взрыве часть энергии взрыва расходуется на образование волны сжатия в грунте. В отличие от ударной волны в воздухе она характеризуется менее резким увеличением давления во фронте волны, а также более медленным его ослаблением за фронтом. При взрыве ядерного боеприпаса в грунте основная часть энергии взрыва передается окружающей массе грунта и производит мощное сотрясение грунта, напоминающее по своему действию землетрясения.

При воздействии на людей ударная волна вызывает различные по степени тяжести поражения (травмы): прямые - от избыточного давления и скоростного напора; косвенные - от ударов обломками ограждающих конструкций, осколков стекла и т.д.

По степени тяжести поражения людей от ударной волны делятся:

·на легкие при ?Рф = 20-40 кПа (0,2-0,4 кгс/см2), (вывихи, ушибы, звон в ушах, головокружение, головная боль);

·средние при ?Рф = 40-60 кПа (0,4-0,6 кгс/см2), (контузии, кровь из носа и ушей, вывихи конечностей);

·тяжелые при ?Рф? 60-100 кПа (тяжелые контузии, повреждения слуха и внутренних органов, потеря сознания, кровотечением из носа и ушей, переломы);

поражающий фактор ядерное оружие

·смертельные при ?Рф? 100 кПа. Отмечаются разрывы внутренних органов, переломы костей, внутренние кровотечения, сотрясение мозга, длительная потеря сознания.

Характер разрушений промышленных зданий в зависимости от нагрузки, создаваемой ударной волной. Общую оценку разрушений, вызванных ударной волной ядерного взрыва, принято давать по степени тяжести этих разрушений:

·слабые разрушения при ?Рф? 10-20 кПа (повреждения окон, дверей, легких перегородок, подвалы и нижние этажи сохраняются полностью. Находиться в здании безопасно и оно может эксплуатироваться после проведения текущего ремонта);

·средние разрушения при ?Рф = 20-30 кПа (трещины в несущих элементах конструкций, обрушение отдельных участков стен. Подвалы сохраняются. После расчистки и ремонта может быть использована часть помещений нижних этажей. Восстановление зданий возможно при проведении капитального ремонта);

·сильные разрушения при ?Рф? 30-50 кПа (обрушение 50% конструкций зданий. Использование помещений становится невозможным, а ремонт и восстановление - чаще всего нецелесообразным);

·полные разрушения при ?Рф? 50 кПа (разрушение всех элементов конструкции зданий. Использовать здание невозможно. Подвальные помещения при сильных и полных разрушениях могут сохраняться и после разбора завалов частично использоваться).

Гарантированная защита людей от ударной волны обеспечивается при укрытии их в убежищах. При отсутствии убежищ используются противорадиационные укрытия, подземные выработки, естественные укрытия и рельеф местности.

1.2 Световое излучение


Световое излучение - это поток лучистой энергии (ультрафиолетовые и инфракрасные лучи). Источником светового излучения является светящаяся область взрыва, состоящая из нагретых до высокой температуры паров и воздуха. Световое излучение распространяется практически мгновенно и длится в зависимости от мощности ядерного боеприпаса (20-40 секунд). Однако не смотря на кратковременность своего воздействия эффективность действия светового излучения очень высока. Световое излучение составляет 35% от всей мощности ядерного взрыва. Энергия светового излучения поглощается поверхностями освещаемых тел, которые при этом нагреваются. Температура нагрева может быть такой, что поверхность объекта обуглится, оплавится, воспламенится или объект испарится. Яркость светового излучения намного сильнее солнечного, а образовавшийся огненный шар при ядерном взрыве виден на сотни километров. Так, когда 1 августа 1958 г. американцы взорвали над островом Джонстон мегатонный ядерный заряд, огненный шар поднялся на высоту 145 км и был виден с расстояния 1160 км.

Световое излучение может вызвать ожоги открытых участков тела, ослепление людей и животных, обугливание или возгорание различных материалов.

Основным параметром, определяющим поражающую способность светового излучения, является световой импульс: это количество световой энергии на единицу площади поверхности, измеряемое в Джоулях (Дж/м2).

Интенсивность светового излучения с увеличением расстояния уменьшается вследствие рассеивания и поглощения. Интенсивность светового излучения сильно зависит от метеорологических условий. Туман, дождь и снег ослабляют его интенсивность, и, наоборот, ясная и сухая погода благоприятствует возникновению пожаров и образованию ожогов.

Выделяются три основные зоны пожаров:

·Зона сплошных пожаров - 400-600 кДж/м2 (охватывает всю зону средних разрушений и часть зоны слабых разрушений).

·Зона отдельных пожаров - 100-200 кДж/м2. (охватывает часть зоны средних разрушений и всю зону слабых разрушений).

·Зона пожаров в завалах - 700-1700 кДж/м2. (охватывает всю зону полных разрушений и часть зоны сильных разрушений).

Поражение людей световым излучением выражается в появлении ожогов четырех степеней на кожном покрове и действием на глаза.

Действие светового излучения на кожу вызывает ожоги:

Ожоги первой степени выражаются в болезненности, покраснении и припухлости кожи. Они не представляют серьезной опасности и быстро вылечиваются без каких-либо последствий.

Ожоги второй степени (160-400 кДж/м2), образуются пузыри, заполненные прозрачной белковой жидкостью; при поражении значительных участков кожи человек может потерять на некоторое время трудоспособность и нуждается в специальном лечении.

Ожоги третьей степени (400-600 кДж/м2) характеризуются омертвлением мышечных тканей и кожи с частичным поражением росткового слоя.

Ожоги четвертой степени (? 600 кДж/м2): омертвление кожи более глубоких слоев тканей, возможна как временная, так и полная потеря зрения и т.д. Поражение ожогами третьей и четвертой степеней значительной части кожного покрова может привести к смертельному исходу.

Действие светового излучения на глаза:

·Временное ослепление - до 30 мин.

·Ожоги роговицы и век.

·Ожог глазного дна - слепота.

Защита от светового излучения более проста, чем от других поражающих факторов, поскольку любая непрозрачная преграда может служить защитой. Полностью защищают от светового излучения убежища, ПРУ, перерытые быстро возводимые защитные сооружения, подземные переходы, подвалы, погреба. Для защиты зданий сооружений пользуются покраской их в светлые тона. Для защиты людей используют ткани, пропитанные огнестойкими составами, и средства для защиты глаз (очки, световые затворы).


1.3 Радиация


Проникающая радиация не однородна. Классический опыт, позволяющий обнаружить сложный состав радиоактивного излучения, состоял в следующем. Препарат радия помещали на дно узкого канала в куске свинца. Против канала находилась фотопластинка. На выходившее из канала излучение действовало сильное магнитное поле, линии индукции которого перпендикулярны лучу. Вся установка размещалась в вакууме. Под действием магнитного поля пучок распадался на три пучка. Две составляющие первичного потока отклонялись в противоположные стороны. Это указывало на наличие у этих излучений электрических зарядов противоположных знаков. При этом отрицательный компонент излучения отклонялся магнитным полем гораздо сильнее, чем положительный. Третья составляющая не отклонялась магнитным полем. Положительно заряженный компонент получил название альфа-лучей, отрицательно заряженный - бета-лучей и нейтральный - гамма-лучей.

Поток ядерного взрыва представляет собой поток альфа, бета, гамма излучений и нейтронов. Поток нейтронов возникает вследствие деления ядер радиоактивных элементов. Альфа-лучи представляют собой поток альфа-частиц (дважды ионизированных атомов гелия), бета-лучи - поток быстрых электронов или позитронов, гамма-лучи - фотонное (электромагнитное) излучение, по своей природе и свойствам не отличающееся от рентгеновских лучей. При прохождении проникающей радиации через любую среду ее действие ослабляется. Излучение разных видов оказывают неодинаковое воздействие на организм, что объясняется разной их ионизирующей способностью.

Так альфа-излучения , представляющие собой тяжелые имеющие заряд частицы, обладают наибольшей ионизирующей способностью. Но их энергия, вследствие ионизации, быстро уменьшается. Поэтому альфа-излучения не способны проникнуть через наружный (роговой) слой кожи и не представляют опасности для человека до тех пор, пока вещества, испускающие альфа-частицы не попадут внутрь организма.

Бета-частицы на пути своего движения реже сталкиваются с нейтральными молекулами, поэтому их ионизирующая способность меньше, чем у альфа-излучения. Потеря же энергии при этом происходит медленнее и проникающая способность в тканях организма больше (1-2 см). Бета-излучения опасны для человека, особенно при попадании радиоактивных веществ на кожу или внутрь организма.

Гамма-излучение обладает сравнительно небольшой ионизирующей активностью, но в силу очень высокой проникающей способности представляет большую опасность для человека. Ослабляющее действие проникающей радиации принято характеризовать слоем половинного ослабления, т.е. толщиной материала, проходя через который проникающая радиация уменьшается в два раза.

Так, проникающую радиацию ослабляют в два раза следующие материалы: свинец - 1.8 см 4; грунт, кирпич - 14 см; сталь - 2.8 см 5; вода - 23 см; бетон - 10 см 6; дерево - 30 см.

Полностью защищают человека от воздействия проникающей радиации специальные защитные сооружения - убежища. Частично защищают ПРУ (подвалы домов, подземные переходы, пещеры, горные выработки) и быстровозводимые населением перекрытые защитные сооружения (щели). Самым надежным убежищем для населения являются станции метрополитена. Большую роль в защите населения от проникающей радиации играют противорадиационные препараты из АИ-2 - радиозащитные средства №1 и №2.

Источником проникающей радиации являются ядерные реакции деления и синтеза, протекающие в боеприпасах в момент взрыва, а также радиоактивный распад осколков деления ядерного горючего. Время действия проникающей радиации при взрыве ядерных боеприпасов не превышает нескольких секунд и определяется временем подъема облака взрыва. Поражающее действие проникающей радиации заключается в способности гамма излучения и нейтронов ионизировать атомы и молекулы, входящие в состав живых клеток, в результате чего нарушаются нормальный обмен веществ, жизнедеятельность клеток, органов и систем организма человека, что приводит к возникновению специфического заболевания - лучевой болезни . Степень поражения зависит от экспозиционной дозы излучения, времени, в течение которого эта доза получена, площади облучения тела, общего состояния организма. Также учитывают, что облучение может быть однократным (полученное за первые 4 суток) и многократным (превышающее 4 суток).

При однократном облучении организма человека в зависимости от полученной экспозиционной дозы различают 4 степени лучевой болезни.


Степень лучевой болезниДп (рад; Р) Характер протекания процессов после облучения1 степень (легкая) 100-200Скрытый период 3-6 недель, затем слабость, тошнота, повышение температуры, работоспособность сохраняется. В крови уменьшается содержание лейкоцитов. Лучевая болезнь первой степени излечима. 2 степень (средняя) 200-4002-3 дня тошнота и рвота, затем скрытый период 15-20 суток, выздоровление через 2-3 месяца; проявляется в более тяжелом недомогании, расстройстве функций нервной системы, головных болях, головокружениях, вначале часто бывает рвота, возможно повышение температуры тела; количество лейкоцитов в крови, особенно лимфоцитов, уменьшается более чем наполовину. Возможны смертельные исходы (до 20%). 3 степень (тяжелая) 400-600Скрытый период 5-10 суток, протекает тяжело, выздоровление через 3-6 месяцев. Отмечают тяжелое общее состояние, сильные головные боли, рвоту, иногда потерю сознания или резкое возбуждение, кровоизлияния в слизистые оболочки и кожу, некроз слизистых оболочек в области десен. Количество лейкоцитов, а затем эритроцитов и тромбоцитов резко уменьшается. Ввиду ослабления защитных сил организма появляются различные инфекционные осложнения. Без лечения болезнь в 20-70% случаев заканчивается смертью, чаще от инфекционных осложнений или от кровотечений. 4 степень (крайне тяжелая) ? 600Наиболее опасна, без лечения обычно заканчивается смертью в течение двух недель.

При взрыве в течение очень короткого времени, измеряемого несколькими миллионными долями секунды, высвобождается огромное количество внутриядерной энергии, значительная часть которой преобразуется в тепло. Температура в зоне взрыва повышается до десятков миллионов градусов. Вследствие этого продукты деления ядерного заряда, не прореагировавшая его часть и корпус боеприпаса мгновенно испаряются и превращаются в раскаленный сильно ионизированный газ. Нагретые продукты взрыва и массы воздуха образуют огненный шар (при воздушном взрыве) или огненную полусферу (при наземном взрыве). Сразу же после образования они быстро увеличиваются в размерах, достигая в диаметре нескольких километров. При наземном ядерном взрыве они с очень большой скоростью поднимаются вверх (иногда свыше 30 км), создавая мощный восходящий поток воздуха, который увлекает с собой десятки тысяч тонн грунта с поверхности земли. С увеличением мощности взрыва возрастают размеры и степень заражения местности в район взрыва и на следе радиоактивного облака. От количества и вида грунта, попавшего в облако ядерного взрыва, зависят количество, размеры и свойства радиоактивных частиц и, следовательно, их скорость выпадения и распределение по территории. Именно поэтому при наземных и подземных взрывах (с выбросом грунта) размеры и степень заражения местности значительно больше, чем при других взрывах. При взрыве на песчаном грунте уровни радиации на следе в среднем в 2,5 раза, а площадь следа в два раза больше чем при взрыве на связанном грунте. Начальная температура грибовидного облака очень высокая, поэтому основная масса попавшего в него грунта расплавляется, частично испаряется и перемешивается с радиоактивными веществами.

Природа последних не одинакова. Это и не прореагировавшая часть ядерного заряда (уран-235, уран-233, плутоний-239), и осколки деления, и химические элементы с наведенной активностью. Примерно за 10-12 минут радиоактивное облако поднимается на максимальную высоту, стабилизируется и начинает перемещаться горизонтально в направлении движения воздушных потоков. Грибовидное облако хорошо видно на большом расстоянии в течение десятков минут. Самые крупные частицы под действием силы тяжести выпадают из радиоактивного облака и столба пыли еще до момента, когда последние достигают предельной высоты и заражают местность в непосредственной близости от центра взрыва. Легкие частицы осаждаются медленнее и на значительных расстояниях от него. Так образуется след радиоактивного облака. Рельеф местности практически не влияет на размеры зон радиоактивного заражения. Однако он обусловливает неравномерное заражение отдельных участков внутри зон. Так, возвышенности и холмы сильнее заражаются с наветренной стороны, чем с подветренной. Продукты деления, выпадающие из облака взрыва, представляют собой смесь примерно 80 изотопов 35 химических элементов средней части периодической системы элементов Менделеева (от цинка №30 до гадолиния №64).

Почти все образующиеся ядра изотопов перегружены нейтронами, являются не стабильными и претерпевают бетта-распад с испусканием гамма-квантов. Первичные ядра осколков деления в последующем испытывают в среднем 3-4 распада и в итоге превращаются в стабильные изотопы. Таким образом, каждому первоначально образовавшемуся ядру (осколку) соответствует своя цепочка радиоактивных превращений. Люди и животные, попавшие в зараженную местность, подвергнутся внешнему облучению. Но опасность подстерегает и с другой стороны. Выпадающие на поверхность земли стронций-89 и стронций-90, цезий-137, иод-127 и иод-131 и другие радиоактивные изотопы включаются в общий круговорот веществ и проникают в живые организмы. Особую опасность представляют стронций-90 иод-131, а также плутоний и уран, которые способны концентрироваться в отдельных частях организма. Ученые установили, что стронций-89 и стронций-90 в основном концентрируются в костной ткани, йод - в щитовидной железе, плутоний и уран - в печени и т.д. Наибольшая степень заражения наблюдается на ближних участках следа. По мере удаления от центра взрыва вдоль оси следа степень заражения уменьшается. След радиоактивного облака условно делится на зоны умеренного, сильного и опасного заражения. В системе светового излучения активность радионуклидов измеряется в Беккерелях (Бк) и равна одному распаду в секунду. По мере увеличения времени, прошедшего после взрыва, активность осколков деления быстро падает (через 7 часов в 10 раз, через 49 часов в 100 раз). Зона А - умеренного заражения - от 40 до 400 бэр. Зона Б - сильного заражения - от 400 до 1200 бэр. Зона В - опасного заражения - от 1200 до 4000 бэр. Зона Г - чрезвычайно опасного заражения - от 4000 до 7000 бэр.

Зона умеренного заражения - самая большая по размерам. В ее пределах население, находящееся на открытой местности, может получить в первые сутки после взрыва легкие радиационные поражения.

В зоне сильного поражения опасность для людей и животных выше. Здесь возможны тяжелые радиационные поражения даже за несколько часов пребывания на открытой местности, особенно в первые сутки.

В зоне опасного заражения самые высокие уровни радиации. Даже на ее границе суммарная доза облучения за время полного распада радиоактивных веществ достигает 1200 р, а уровень радиации через 1 час после взрыва составляет 240 р/ч. В первые сутки после заражения суммарная доза на границе этой зоны составляет примерно 600 р, т.е. практически она смертельна. И хотя затем дозы облучения снижаются, на этой территории пребывание людей вне укрытий опасно очень продолжительное время.

Для защиты населения от радиоактивного заражения местности используются все имеющиеся защитные сооружения (убежища, ПРУ, подвалы многоэтажных домов, станции метрополитена). Эти защитные сооружения должны обладать достаточно высоким коэффициентом ослабления (Косл) - от 500 до 1000 и более раз, т.к. зоны радиоактивного заражения имеют высокие уровни радиации. В зонах радиоактивного заражения местности населению необходимо принимать радиозащитные препараты из АИ-2 (№1 и №2).


1.4 Электромагнитный импульс


Ядерные взрывы в атмосфере и в более высоких слоях приводят к образованию мощных электромагнитных полей с длинами волн от 1 до 1000 м и более. Эти поля в виду их кратковременного существования принято называть электромагнитным импульсом . Электромагнитный импульс возникает и в результате взрыва и на малых высотах, однако напряженность электромагнитного поля в этом случае быстро спадает по мере удаления от эпицентра. В случае же высотного взрыва, область действия электромагнитного импульса охватывает практически всю видимую из точки взрыва поверхность Земли. Поражающее действие электромагнитного импульса обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, земле, в радиоэлектронной и радиотехнической аппаратуре. Электромагнитный импульс в указанной аппаратуре наводит электрические токи и напряжения, которые вызывают пробой изоляции, повреждение трансформаторов, сгорание разрядников, полупроводниковых приборов, перегорание плавких вставок. Наиболее подвержены воздействию электромагнитных импульсов линии связи, сигнализации и управления ракетных стартовых комплексов, командных пунктов. Защита от электромагнитных импульсов осуществляется экранированием линий управления и энергоснабжения, заменой плавких вставок (предохранителей) этих линий. Электромагнитный импульс составляет 1% от мощности ядерного боеприпаса.

2. Защитные сооружения


Защитные сооружения являются наиболее надежным средством защиты населения от аварий в районах АЭС, а также от ОМП и других современных средств нападения. Защитные сооружения в зависимости от защитных свойств подразделяются на убежища и противорадиационные укрытия (ПРУ). Кроме того, для защиты людей могут применяться простейшие укрытия.

. Убежища - это специальные сооружения, предназначенные для защиты укрывающихся в них людей от всех поражающих факторов ядерного взрыва, отравляющих веществ, бактериальных средств, а также от высоких температур и вредных газов, образующихся при пожарах.

Убежище состоит из основного и вспомогательных помещений. В основном помещении, предназначенном для размещения укрываемых, оборудуются двух - или трехъярусные нары-скамейки для сидения и полки для лежания. Вспомогательные помещения убежища - это санитарный узел, фильтровентиляционная камера, а в сооружениях большой вместимости - медицинская комната, кладовая для продуктов, помещения для артезианской скважины и дизельной электростанции. В убежище устраивается, как правило, не менее двух входов; в убежищах малой вместимости - вход и аварийный выход. Во встроенных убежищах входы могут делаться с лестничных клеток или непосредственно с улицы. Аварийный выход оборудуется в виде подземной галереи, оканчивающейся шахтой с оголовком или люком на незаваливаемой территории. Наружная дверь делается защитно-герметической, внутренняя - герметической. Между ними располагается тамбур. В сооружениях большой вместимости (более 300 человек) при одном из входов оборудуется тамбур-шлюз, который с наружной и внутренней сторон закрывается защитно-герметическими дверями, что обеспечивает возможность выхода из убежища без нарушения защитных свойств входа. Система воздухоснабжения, как правило, работает на двух режимах: чистой вентиляции (очистка воздуха от пыли) и фильтровентиляции. В убежищах, расположенных в пожароопасных районах, дополнительно предусматривается режим полной изоляции с регенерацией воздуха внутри убежища. Системы энерговодоснабжения, отопления и канализации убежищ связаны с соответствующими внешними сетями. На случай их повреждения в убежище имеются переносные электрические фонари, резервуары для хранения аварийного запаса воды, а также емкости для сбора нечистот. Отопление убежищ предусматривается от общей отопительной сети. В помещениях убежища размещается, кроме того, комплект средств для ведения разведки, защитная одежда, средства тушения пожара, аварийный запас инструмента.

. Противорадиационные укрытия (ПРУ) обеспечивают защиту людей от ионизирующих излучений при радиоактивном заражении (загрязнении) местности. Кроме того, они защищают от светового излучения, проникающей радиации (в том числе и от нейтронного потока) и частично от ударной волны, а также от непосредственного попадания на кожу и одежду людей радиоактивных, отравляющих веществ и бактериальных средств. Устраиваются ПРУ прежде всего в подвальных этажах зданий и сооружений. В ряде случаев возможно сооружение отдельно стоящих быстровозводимых ПРУ, для чего используют промышленные (сборные железобетонные элементы, кирпич, прокат) или местные (лесоматериалы, камни, хворост и т.п.) строительные материалы. Под ПРУ приспосабливают все пригодные для этой цели заглубленные помещения: подвалы, погреба, овощехранилища, подземные выработки и пещеры, а также помещения в наземных зданиях, имеющих стены из материалов, обладающих необходимыми защитными свойствами. Для повышения защитных свойств в помещении заделывают оконные и лишние дверные проемы, насыпают слой грунта на перекрытие и делают, если нужно, грунтовую подсыпку снаружи у стен, выступающих выше поверхности земли. Герметизация помещений достигается тщательной заделкой трещин, щелей и отверстий в стенах и потолке, в местах примыкания оконных и дверных проемов, ввода отопительных и водопроводных труб; подгонкой дверей и обивкой их войлоком с уплотнением притвора валиком из войлока или другой мягкой плотной ткани. Укрытия вместимостью до 30 человек проветриваются естественной вентиляцией через приточный и вытяжной короба. Для создания тяги вытяжной короб устанавливают на 1,5-2 м выше приточного. На наружных выводах вентиляционных коробов делают козырьки, а на входах в помещение - плотно пригнанные заслонки, которые закрывают на время выпадения радиоактивных осадков. Внутреннее оборудование укрытий аналогично оборудованию убежища. В приспосабливаемых под укрытия помещениях, не оборудованных водопроводом и канализацией, устанавливают бачки для воды из расчета 3-4 л на одного человека в сутки, а туалет снабжают выносной тарой или люфт-клозетом с выгребной ямой. Кроме того, в укрытии устанавливают нары (скамьи), стеллажи или лари для продовольствия. Освещение осуществляется от наружной электросети или переносными электрическими фонарями. Защитные свойства ПРУ от воздействия радиоактивных излучений оцениваются коэффициентом защиты (ослабления радиации), который показывает, во сколько раз доза радиации на открытой местности больше дозы радиации в укрытии, т.е. во сколько раз ПРУ ослабляют действие радиации, а следовательно, дозу облучения людей.

Дооборудование подвальных этажей и внутренних помещений зданий повышает их защитные свойства в несколько раз. Так, коэффициент защиты оборудованных подвалов деревянных домов повышается примерно до 100, каменных домов - до 800 - 1000. Необорудованные погреба ослабляют радиацию в 7 - 12 раз, а оборудованные - в 350-400 раз.

К простейшим укрытиям относятся щели открытые и перекрытые. Щели строятся самим населением с использованием подручных местных материалов. Простейшие укрытия обладают надежными защитными свойствами. Так, открытая щель в 1,5-2 раза уменьшает вероятность поражения ударной волной, световым излучением и проникающей радиацией, в 2-3 раза снижает возможность облучения в зоне радиоактивного заражения. Перекрытая щель защищает от светового излучения полностью, от ударной волны - в 2,5-3 раза, от проникающей радиации и радиоактивного излучения - в 200-300 раз.

Щель первоначально устраивают открытой. Она представляет собой зигзагообразную траншею в виде нескольких прямолинейных участков длиной не более 15 м. Глубина ее 1,8-2 м, ширина по верху 1,1-1,2 м и по дну до 0,8 м. Длина щели определяется из расчета 0,5-0,6 м на одного человека. Нормальная вместимость щели 10-15 человек, наибольшая-50 человек. Строительство щели начинают с разбивки и трассировки - обозначения ее плана на местности. Вначале провешивается базисная линия, на ней откладывается общая длина щели. Затем влево и вправо откладываются половинные размеры ширины щели по верху. В местах изломов забиваются колышки, между ними натягиваются трассировочные шнуры и отрываются канавки глубиной 5-7 см. Рытье начинают не по всей ширине, а несколько отступив внутрь от линии трассировки. По мере углубления постепенно подравнивают откосы щели и доводят ее до требуемых размеров. В дальнейшем стенки щели укрепляют досками, жердями, камышом или другими подручными материалами. Затем щель перекрывают бревнами, шпалами или малогабаритными железобетонными плитами. Поверх покрытия настилают слой гидроизоляции, применяя толь, рубероид, хлорвиниловую пленку, или укладывают слой мятой глины, а затем слой грунта толщиной 50-60 см. Вход делают с одной или с двух сторон под прямым углом к щели и оборудуют герметической дверью и тамбуром, отделяя занавесом из плотной ткани помещение для укрываемых. Для вентиляции устанавливают вытяжной короб. Вдоль пола прорывают дренажную канавку с водосборным колодцем, расположенным при входе в щель.

Заключение


Ядерное оружие - самое опасное из всех известных на сегодняшний день средств массового поражения. И, несмотря на это, его количества с каждым годом всё увеличиваются. Это обязывает каждого человека знать способы защиты, чтобы предотвратить смерть и, может быть, даже не одну.

Для того, чтобы защититься, необходимо иметь хотя бы малейшее представление о ядерном оружии и его действии. Именно в этом и заключается основная задача гражданской обороны: дать человеку знания для того, чтобы он мог сам себя защитить (причем это касается не только ядерного оружия, а вообще всех опасных для жизни людей ситуаций).

К поражающим факторам относятся:

) Ударная волна. Характеристика: скоростной напор, резкое повышение давления. Последствия: разрушения механическим воздействием ударной волны и поражения людей и животных вторичными факторами. Защита: использование убежищ, простейших укрытий и защитных свойств местности.

) Световое излучение. Характеристика: очень высокая температура, ослепляющая вспышка. Последствия: пожары и ожоги кожи людей. Защита: использование убежищ, простейших укрытий и защитных свойств местности.

) Радиация. Проникающая радиация. Характеристика: альфа, бета, гамма излучения. Последствия: поражение живых клеток организма, лучевая болезнь. Защита: использование убежищ, противорадиационных укрытий простейших укрытий и защитных свойств местности.

Радиоактивное заражение. Характеристика: большая площадь поражения, длительность сохранения поражающего действия, трудности обнаружения радиоактивных веществ, не имеющих цвета, запаха и других внешних признаков. Последствия: лучевая болезнь, внутреннее поражение радиоактивными веществами. Защита: применение убежищ, противорадиационных укрытий, простейших укрытий, защитных свойств местности и средств индивидуальной защиты.

) Электромагнитный импульс. Характеристика: кратковременное электромагнитное поле. Последствия: возникновение коротких замыканий, пожаров, действие вторичных факторов на человека (ожоги). Защита: хорошо изолировать линии, проводящие ток.

Защитными сооружениями служат убежища, противорадиационные укрытия (ПРУ), а также простейшие укрытия.


Список литературы


1.Иванюков М.И., Алексеев В.А. Основы безопасности жизнедеятельности: Учебное пособие - М.: Издательско-торговая корпорация "Дашков и К", 2007;

2.Матвеев А.В., Коваленко А.И. Основы защиты населения и территорий в чрезвычайных ситуациях: Учебное пособие - С-Пб, ГУАП, 2007;

.Афанасьев Ю.Г., Овчаренко А.Г. и др. Безопасность жизнедеятельности. - Бийск: Изд-во АГТУ, 2006;

.Кукин П.П., Лапин В.Л. и др. Безопасность жизнедеятельности: Учебное пособие для вузов. - М.: Высшая школа, 2003;


Ядерный взрыв сопровождается выделением огромного количества энергии и способен практически мгновенно вывести из строя на значительном расстоянии незащищенных людей, открыто расположенную технику, сооружения и различные материальные средства. Основными, поражающими факторами ядерного взрыва являются: ударная волна (сейсмовзрывные волны), световое излучение, проникающая радиация электромагнитный импульс, и радиоактивное заражение местности.

Ударная волна. Ударная волна является основным поражающим фактором ядерного взрыва. Она представляет собой область сильного сжатия среды (воздуха, воды), распространяющуюся во все стороны от точки взрыва со сверхзвуковой скоростью. В самом начале взрыва передней границей ударной волны является поверхность огненного шара. Затем, по мере удаления от центра взрыва, передняя граница (фронт) ударной волны отрывается от огненного шара, перестает светиться и становится невидимой.

Основными параметрами ударной волны являются избыточное давление во фронте ударной волны, время ее действия и скоростной напор. При подходе ударной волны к какой-либо точке пространства в ней мгновенно повышается давление и температура, а воздух начинает двигаться в направлении распространения ударной волны. С удалением от центра взрыва давление во фронте ударной волны падает. Затем становится меньше атмосферного (возникает разрежение). В это время воздух начинает двигаться в направлении, противоположном направлению распространения ударной волны. После установления атмосферного давления движение воздуха прекращается.

Ударная волна проходит первые 1000 м за 2 сек, 2000 м — за 5 сек, 3000 м — за 8 сек.

За это время человек, увидев вспышку, может укрыться и тем самым уменьшить вероятность поражения волной или вообще избежать его.

Ударная волна может наносить поражения людям, разрушать или повреждать технику, вооружение, инженерные сооружения и имущество. Поражения, разрушения и повреждения вызываются как непосредственным воздействием ударной, волны, так и косвенно — обломками разрушаемых зданий, сооружений, деревьев и т. п.

Степень поражения людей и различных объектов зависит от того, на каком расстоянии от места взрыва и в каком положении они находятся. Объекты, расположенные на поверхности земли, повреждаются сильнее, чем заглубленные.

Световое излучение. Световое излучение ядерного взрыва представляет собой поток лучистой энергии, источником которой является светящаяся область, состоящая из раскаленных продуктов взрыва и раскаленного воздуха. Размеры светящейся области пропорциональны мощности взрыва. Световое излучение распространяется практически мгновенно (со скоростью 300000 км/ сек) и длится в зависимости от мощности взрыва от одной до нескольких секунд. Интенсивность светового излучения и его поражающее действие уменьшаются с увеличением расстояния от центра взрыва; при увеличении расстояния в 2 и 3 раза интенсивность светового излучения снижается в 4 и 9 раз.

Действие светового излучения при ядерном взрыве заключается в нанесении поражений людям и животным ультрафиолетовыми, видимыми и инфракрасными (тепловыми) лучами в виде ожогов различной степени, а также в обугливании или возгорании воспламеняющихся частей и деталей сооружений, зданий, вооружения, боевой техники, резиновых катков танков и автомобилей, чехлов, брезентов и других видов имущества и материалов. При прямом наблюдении взрыва с близкого расстояния световое излучение причиняет повреждения сетчатке глаз и может вызвать потерю зрения (полностью или частично).

Проникающая радиация. Проникающая радиация представляет собой поток гамма лучей и нейтронов, испускаемых в окружающую среду из зоны и облака ядерного взрыва. Продолжительность действия проникающей радиации, составляете всего несколько секунд, тем не менее, она способна наносить тяжелое поражение личному составу в виде лучевой болезни, особенно если он расположен открыто. Основным источником гамма-излучения являются осколки деления вещества заряда, находящиеся в зоне взрыва и радиоактивном облаке. Гамма-лучи и нейтроны способны проникать через значительные толщи различных материалов. При прохождении через различные материалы поток гамма-лучей ослабляется, причем, чем плотнее вещество, тем больше ослабление гамма-лучей. Например, в воздухе гамма-лучи распространяются на многие сотни метров, а в свинце всего лишь на несколько сантиметров. Нейтронный поток наиболее сильно ослабляется веществами, в состав которых входят легкие элементы (водород, углерод). Способность материалов ослаблять гамма-излучение и поток нейтронов можно характеризовать величиной слоя половинного ослабления.

Слоем половинного ослабления называется толщина материала, проходя через, которую гамма-лучи и нейтроны ослабляются в 2 раза. При увеличении толщины материала до двух слоев половинного ослабления доза радиации уменьшается в 4 раза, до трех слоев — в 8 раз и т. д.

Значение слоя половинного ослабления для некоторых материалов

Коэффициент ослабления проникающей радиации при наземном взрыве мощностью 10 тыс. т. для закрытого бронетранспортера равен 1,1. Для танка — 6, для траншеи полного профиля – 5. Подбрустверные ниши и перекрытые щели ослабляют радиацию в 25-50 раз; покрытие блиндажа ослабляет радиацию в 200-400 раз, а покрытие убежища — в 2000-3000 раз. Стена железобетонного сооружения толщиной в 1 м ослабляет радиацию примерно в 1000 раз; броня танков ослабляет радиацию в 5-8 раз.

Радиоактивное заражение местности. Радиоактивное заражение местности, атмосферы и различных объектов при ядерных взрывах вызывается осколками деления, наведенной активностью и не прореагировавшей частью заряда.

Основным источником радиоактивного заражения при ядерных взрывах являются радиоактивные продукты ядерной реакции — осколки деления ядер урана или плутония. Радиоактивные продукты ядерного взрыва, осевшие на поверхность земли, испускают гамма-лучи, бета — и альфа-частицы (радиоактивные излучения).

Радиоактивные частицы выпадают из облака и заражают местность, создавая радиоактивный след (рис. 6) на расстояниях в десятки и сотни километров от центра взрыва.

Рис. 6. Зоны заражения на следе ядерного взрыва

По степени опасности зараженную местность по следу облака ядерного взрыва делят на четыре зоны.

Зона А – умеренного заражения. Доза излучения до полного распада радиоактивных веществ на внешней границе зоны составляет 40 рад, на внутренней границе – 400 рад.

Зона Б – сильного заражения – 400-1200 рад.

Зона В – опасного заражения – 1200-4000 рад.

Зона Г – чрезвычайно опасного заражения – 4000-7000 рад.

На зараженной местности люди подвергаются действию радиоактивных излучений, в результате чего у них может развиться лучевая болезнь. Не менее опасно попадание радиоактивных веществ внутрь организма, а также на кожу. Так, при попадании на кожу, особенно на слизистые оболочки полости рта, носа и глаз, даже малых количеств радиоактивных веществ могут наблюдаться радиоактивные поражения.

Вооружение и техника, зараженные РВ, представляют определенную опасность для личного состава, если обращаться, с ними без средств защиты. В целях исключения поражения личного состава от радиоактивности зараженной техники установлены допустимые уровни заражения продуктами ядерных взрывов, не приводящие к лучевому поражению. Если заражение выше допустимых норм, то необходимо удалять радиоактивную пыль с поверхностей, т. е. производить их дезактивацию.

Радиоактивное заражение, в отличие от других поражающих факторов, действует длительное время (часы, сутки, годы) и на больших площадях. Оно не имеет внешних признаков и обнаруживается только с помощью специальных дозиметрических приборов.

Электромагнитный импульс. Электромагнитные поля, сопровождающие ядерные взрывы, называют электромагнитным импульсом (ЭМИ).

При наземном и низком воздушном взрывах поражающее воздействие ЭМИ наблюдается на расстоянии нескольких километров от центра взрыва. При высотном ядерном взрыве могут возникнуть поля ЭМИ в зоне взрыва и на высотах 20-40 км от поверхности земли.

Поражающее действие ЭМИ проявляется, прежде всего, по отношению к радиоэлектронной и электротехнической аппаратуре, находящейся на вооружении и военной технике и других объектах. Под действием ЭМИ в указанной аппаратуре наводятся электрические токи и напряжения, которые могут вызвать пробой изоляции, повреждение трансформаторов, порчу полупроводниковых приборов, перегорание плавких вставок и других элементов радиотехнических устройств.

Сейсмовзрывные волны в грунте. При воздушных и наземных ядерных взрывах в грунте образуются сейсмовзрывные волны, представляющие собой механические колебания грунта. Эти волны распространяются на большие расстояния от эпицентра взрыва, вызывают деформации грунта и являются существенным поражающим фактором для подземных, шахтных и котлованных сооружений.

Источником сейсмовзрывных волн при воздушном взрыве является воздушная ударная волна, действующая на поверхность земли. При наземном взрыве сейсмовзрывные волны образуются как в результате действия воздушной ударной волны, так и вследствие передачи энергии грунту непосредственно в центре взрыва.

Сейсмовзрывные волны формируют динамические нагрузки на конструкции, элементы строений и т. д. Сооружения и их конструкции совершают колебательные движения. Напряжения, возникающие в них, при достижении определенных значений приводить к разрушениям элементов конструкций. Колебания, передаваемые от строительных конструкций на размещаемые в сооружениях вооружение, военную технику и внутреннее оборудование, могут приводить к их повреждениям. Пораженным может оказаться и личный состав в результате действия на него перегрузок и акустических волн, вызываемых колебательным движением элементов сооружений.

Читать полный конспект