Лазерное сканирование — это современная технология точных обмерных работ. Лазерное сканирование местности и зданий

Введение

1. Аппаратура и программное обеспечение

1.1 Описание сканирующей системы

1.2 Технические характеристики

1.3 Программное обеспечение Cyclone 6.0

1.3.1 Cyclone-SCAN - управление сканером

1.3.2 Cyclone-REGISTER - уравнивание облаков точек

1.3.3 Cyclone-MODEL - измерения, моделирование и чертежи

1.3.4 LeicaCyclone - VIEWER и VIEWERPRO – измерения и визуализация объектов

1.3.5 Leica COE (Cyclone Object Exchange) - обмен данными

1.3.6 CycloneCloudWorx для AutoCAD

2. Возможности сканирующей системы

2.1 Основы технологии лазерного сканирования

2.2 Принцип работы сканирующей системы

2.3 Задачи, решаемые с помощью лазерного сканирования

Заключение

Список используемой литературы

В настоящее время для решения строительных и архитектурных задач широко используется тахеометрическая съемка, которая позволяет получить координаты объектов, а затем представить их в графическом виде. Тахеометрическая съемка позволяет проводить измерения с точностью до нескольких миллиметров, при этом скорость измерения тахеометра не более 2 измерений в секунду. Такой метод эффективен при съемке разреженной, незагруженной объектами площади. Очевидными недостатками такой технологии являются малая скорость проведения измерений, и неэффективность съемки загруженных площадей, таких как фасады зданий, заводов с площадь превышающей 2 га, а так же малая плотность точек на 1м2.

Одним из возможных способов решения данных проблем является применение новых современных технологий исследования, а именно лазерного сканирования.

Лазерное сканирование – технология, позволяющая создать цифровую трехмерную модель объекта, представив его набором точек с пространственными координатами. Технология основана на использовании новых геодезических приборов – лазерных сканеров, измеряющих координаты точек поверхности объекта с высокой скоростью порядка нескольких десятков тысяч точек в секунду. Полученный набор точек называется «облаком точек» и впоследствии может быть представлен в виде трехмерной модели объекта, плоского чертежа, набора сечений, поверхности и т.д.

Более полную цифровую картину невозможно представить никаким другим из известных способов. Процесс съемки полностью автоматизирован, а участие оператора сводится лишь к подготовке сканера к работе.

1. Аппаратура и программное обеспечение

1.1 Описание сканирующей системы

В состав сканирующей системы входит: транспортный ящик, трегер, штатив, Ethernet-кабель связи сканера с компьютером, кейс с принадлежностями (аккумулятор, кабель соединения сканера и аккумулятора, зарядное устройство), программное обеспечение Cyclone 6.0

Рис. 1 Сканирующее устройство LeicaScanStation 2.

Сканирующее устройство имеет подвижную часть и неподвижную (рис.1). На подвижной части прибор имеет два рабочих окна, фронтальное и верхнее, видимая область этих окон называется полем зрения прибора. Сканируемая область сканера 3600 по горизонтали и 2700 по вертикали.

На неподвижной части находятся индикаторы «готовности» и три входа: два под аккумуляторы, один под Ethernet – подключение. Внутри сканера установлена система зеркал, управляемых специальными двигателями, которые направляют сканирующий лазер под нужным углом сканирования.

1 .2 Технические характеристики

Технические характеристики представлены в таблице 1.

Таблица 1 Технические характеристики сканера.

Точность определения положения точки 4 мм на 50 м
Точность измерения расстояния, мм 4
Угловая точность (по вертикали/ /горизонтали), микрорадиан 60
Тип лазера Импульсный лазерный сканер с двухосевым компенсатором
Размер пятна лазера до 4 мм на 50-и метрах
Максимальное расстояние до 300 м при отражении 90%
Частота сканирования до 50000 точек в секунду
Избирательность по вертикали/ /горизонтали 1,2 мм между точками на 50 м
Точек по вертикали, максимум 5000
Точек по горизонтали, максимум 20000
Поле зрения по вертикали, ° 270
Поле зрения по горизонтали, ° 360
Видоискатель встроенная цифровая камера
Видео наведение Разрешение определяется пользователем. Одно фото 24°х24° (1024х1024 пикселей). Поле зрения 360°х270° - 111 фото.
Длительность работы от аккумулятора до 6 часов
Рабочая температура, °С 0° - +40°С
Температура хранения, °С -25° - +65°С
Размеры сканера, мм 265 х 370 х 510
Вес сканера, кг 18,5
Размеры аккумулятора, мм 165 х 236 х 215
Вес аккумулятора, кг 12

1 .3 Программное обеспечение Cyclone 6.0

Программное обеспечение играет чрезвычайно важную роль в быстрой и эффективной обработке «облаков точек», полученных в результате съемок высокого разрешения. Cyclone включает полный набор программных модулей для наиболее удобной обработки облаков точек.

Cyclone – это набор программных модулей Leica HDS (рис.2), который считается многими специалистами, работающими в области лазерного сканирования, настоящим стандартом для решения задач сканирования, визуализации, измерения, построения трехмерных моделей и чертежей, анализа данных и представления результата в традиционной форме или для решения других задач. С применением модуля Cyclone CloudWorx процесс обучения сводится к изучению использования трехмерных облаков точек в программных комплексах САПР.


Рис. 2 Общий порядок обработки облаков точек в Cyclone.

Cyclone - программный комплекс, который предоставляет весьма широкий набор средств для различных вариантов обработки трехмерных данных лазерного сканирования в инженерии, геодезии, строительстве и других областях применения.

Всеобъемлющая полнота трехмерных облаков точек является основным достоинством по сравнению с другими источниками геометрической информации. Уникальная архитектура программы Cyclone основана на объектно-ориентированной базе данных, работающей по технологии Клиент/Сервер. Это технология предоставляет самую высокую скорость отображения данных при обработке проектов лазерного сканирования. Программа Cyclone дает возможность эффективно управлять данными лазерного сканирования, при этом сохраняется прозрачность обслуживания базы данных, то есть не требуются какие-либо специальные знания по управлению баз данных. Все данные - облака точек, изображения, топопривязка, результаты уравнивания, измерения, модели объектов и многое другое хранятся в одном файле. Тем самым нет необходимости перезаписывать или пересылать информацию из одного модуля в другой и т.д.

Технология Клиент/Сервер позволяет одновременно работать до 10 специалистов над одним проектом.

Для ускорения работы можно перейти в однопользовательский режим. Тем самым увеличение скорости отображения и обработки массивов точек составляет до 2-4 раз.

Cyclone состоит из отдельных модулей, встраиваемых в единую программную оболочку. Различные модули предназначены для решения отдельных задач общего процесса обработки данных трехмерного лазерного сканирования.

1 .3.1 Cyclone-SCAN - управление сканером

Cyclone-SCAN - это модуль для управления работой сканера LeicaScanStation 2. Пользователь может настраивать плотность сканирования, фильтрацию данных, создавать собственные макрокоманды, сканировать и автоматически распознавать плоские и сферические визирные цели Leica Geosystems HDS. При всем функциональном богатстве работать с Cyclone-SCAN очень легко из-за простого и понятного интерфейса.

Функциональные возможности Cyclone-Scan:

Пространственное перемещение, масштабирование, разворот в режиме реального времени, изменение цвета точек по материалам цифровой фотографии или по другим условиям для точек, поверхностей и смоделированных тел.

Трехмерная визуализация во время сканирования

Регулирование уровня детализации облаков точек и трехмерных моделей для ускорения визуализации.

Настройки для быстрой переотрисовки облаков точек в сетях треугольников (TIN)

Прореживание облаков точек (каждая n-ная точка)

Визуализация облаков точек по значению интенсивности или по цвету

Ограничение объема визуализируемых точек по выбранному региону или срезу для быстрого черчения

Предварительная установка среднего расстояния до объекта по единичному направленному измерению

Автоматическое создание цифровой мозаики для панорамного снимка

Панорамный просмотр для цифрового изображения

Геодезическая привязка по пунктам известного геодезического обоснования

Установка высоты инструмента перед сканированием

Установка высоты визирной цели

Функция Установи-и-сканируй (Point-and-scan) QuickScan™ для интерактивной установки горизонтального окна съемки

Фильтрация для возможного исключения «лишних» данных:

a) Ограничение области сканирования по прямоугольнику или произвольному многоугольнику

b) Ограничение диапазона по дальности

c) Ограничение по интенсивности отраженного сигнала

d) Все предварительные установки настройки сканирования могут быть записаны и вызваны в любой момент. Есть готовый список стандартных установок сканирования

e) Настройка качества проверки совмещения

Измерения расстояний, площадей и объемов по отдельным точкам и по готовым моделям:

a) Наклонные расстояния

b) Расстояния DX, DY, DZ

c) Создание и редактирование подписей

d) Создание и управление слоями

e) Назначение цветов и материалов объектам

f) Просмотр с позиции сканера и указание его местоположения


Чем различаются 3D-съёмки: НЛС, МЛС, ВЛС?

Между технологиями лазерного сканирования большое различие в методике 3D-съёмки, в используемых приборах, в методах регистрации и обработки массивов измерений. Соответственно, различен и достигаемый результат измерений. И в первую очередь - по точности.

Условно, по реальной точности разных методов измерений (не точности самих приборов) и по производительности работ, типы съёмки можно охарактеризовать так:

Отмечу, что применительно ко всем типам лазерных съёмок: повышение точности и детальности ведут к существенному увеличению как технических мероприятий, так и трудовых затрат, а значит - к удорожанию работ. Поэтому, в технических заданиях следует тщательнее соизмерять реальные потребности с бюджетом конкретного проекта. То есть тезис «Снять нужно абсолютно всё и как можно точнее» - это всегда окажется дорого. А вот конкретика: «Интересуют несущие строительные конструкции с точностью 4 см.» - смета сразу окажется в 2-3 раза меньше.

Современная 3D-технология "воздушное лазерное сканирование" (ВЛС) – это качественное развитие традиционных аэрофотосъёмочных технологий. Сканирование проводится с борта летящего самолета или вертолета и позволяет за один полётный день выполнить съёмку тысяч гектар поверхности земли. Получаемые трёхмерные данные содержат полную пространственно-геометрическую информацию о рельефе местности, растительном покрове, гидрографии и расположении всех наземных объектов в полосе съёмки. При больших объёмах, стоимость работ ВЛС существенно дешевле, чем привычная топографическая съёмка тахеометрами.

Сегодня ВЛС активно используется при:

    создании топографических планов различных масштабов вплоть до 1:1000;

    построении цифровых моделей местности;

    исследовании линейных и площадных объектов;

    управлении водным и лесным хозяйством;

    изучении природных и техногенных процессов;

    инвентаризации земельно-имущественного комплекса;

    градостроительстве, моделировании процессов развития города;

    инспекции линий электропередач;

    строительстве и реконструкции автомобильных и железных дорог.

Основу технологии ВЛС составляет система LIDAR . Название - транслитерация английского "Light Identification, Detection and Ranging" , означат получение и обработку информации об удалённых объектах с помощью лазерной сканирующей системы.

Основные характеристики системы:

    Система LIDAR позволяет с воздушного судна измерять расстояния до всех видимых объектов на поверхности земли.

    За одну секунду выполняется порядка 300 тысяч измерений (точек) на поверхности объектов.

    Съёмка территории ведётся полосами с углом обзора порядка 60 градусов.

    Результат лазерного сканирования: массив измерений (облако точек), представленный в единой системе координат. После постобработки - топопланы масштаба от 1:1000, трёхмерные цифровые модели местности.

    Точность данных, полученных системой LIDAR, зависит от используемого оборудования, GPS-обстановки и условий полёта.


Преимущества технологии ВЛС:

    Съёмка с высоты полёта позволяет получить недоступные с земли элементы объектов.

    Из-за минимума горизонтальных «слепых зон» - высокая детальность материалов.

    Возможность получения истинного рельефа таких труднодоступных и чересчур обременительных для съемки традиционными методами мест как: тундра, пустыня, заснеженная территория.

    Быстрое получение результата сканирования: массив измерений (облако точек), представленный в единой системе координат. После постобработки – топографические планы масштаба от 1:1000 и трёхмерные цифровые модели местности.

Мобильное лазерное сканирование

Допустим, необходимо выполнить не привычную планово-высотную съёмку, а полноценную трёхмерную съёмку, например, городского района. ВЛС быстро и качественно позволяет снимать наклонно-горизонтальные поверхности площадных объектов. При этом, фронтальные поверхности объектов снимутся значительно хуже. Конечно же можно дополнить съёмку, применив технологии НЛС. Но у этих технологий существенная разница в производительности. Решение простое: система LIDAR немного трансформируется и устанавливается на автомобиль. При этом, либо увеличивается число сканирующих лазерных сенсоров, либо используется один широкоугольный. Как и в ВЛС, сканирование осуществляется в постоянном движении и реальном времени. Это и есть мобильное лазерное сканирование (МЛС). Система может быть установлена на любое передвижное средство, например, поезд.

Методика МЛС позволяет проводить съемку всех объектов по курсу движения транспортного средства. Здания, сооружения, дорожное полотно, уличная инфраструктура, ЛЭП, мосты, туннели и т.д. Принципы и точность съёмки схожы с ВЛС.

Работы могут производиться в любое время суток не мешая транспортному потоку. Средняя скорость движения съемочного комплекса – до 70 км/час. Так, поезд, оборудованный подобной системой, способен в течение суток отснять около 1200 погонных километров путей (в одном направлении) с шириной полосы сканирования в десятки метров. Автомобилю достаточно 2-3 раза проехать по улице, что бы получить не только дорожную инфраструктуру улицы, но и прилегающие к ней территории.

МЛС используется в следующих сферах:

    дорожное хозяйство;

    электроэнергетика;

    градостроительство

    территориальное планирование;

    жилищно-коммунальное хозяйство;

    трубопроводное строительство;

    экологический мониторинг;

    мониторинг чрезвычайных ситуаций.

Преимущества технологии МЛС:

    Мобильная сканирующая система равномерно покрывает измерениями (облаком точек) всё, что попадает в поле зрения.

    Работы могут производиться в любое время суток, при этом, не мешая транспортному потоку.

    Средняя скорость движения съемочного комплекса довольно велика и составляет 60-70 км/час.

    Применение МЛС позволяет экономить время и трудозатраты при съемке протяженных объектов и городских кварталов.

    Технология позволяет производить первые измерения по облаку точек уже спустя несколько часов после съемки.

ВЛС и МЛС хороши для топосъёмки больших территорий. На объектах, где их применение нецелесообразно (из-за низкой точности, внутри зданий и сооружений, в местах с повышенной детализацией), успешно применяется технология наземного лазерного сканирования (НЛС). Методы НЛС позволяют выполнять съёмку не только снаружи, но и внутри сложных инженерных сооружений.

НЛС на сегодняшний день, - самый оперативный способ получения точной и полной информации об геометрических параметрах объекта. Наземное сканирование применяется при съёмке зданий, мостов, путепроводов, эстакад, надземных коммуникаций, цехов заводов, энергетических объектов, линейных объектов, для построения модели рельефа и топографической съёмки локальных участков земли.

Сканирование производится с точки установки штатива (станции), обзор составляет 360*320 градусов. Как правило, сканирование объекта выполняется с нескольких станций. Используя методы классической геодезии, данные ЛС приводятся к единой системе координат. В зависимости от условий, одним сканером за один день на объекте можно выполнить порядка сотни станций. На каждой станции в автоматическом режиме выполняются десятки миллионов измерений объекта с точностью 1-5 мм. Миллиметровая плотность покрытия измерениями (точками) позволяет детализировать в итоговой съёмке (облаке точек) даже самые малые элементы объекта.

Результат съёмки: облако точек, состоящее из миллиардов точных измерений исследуемого объекта в заданной системе координат. Никакими иными методами подобного результата невозможно достичь за соизмеримые сроки исполнения. Облако точек – это реальная трёхмерная модель объекта съёмки. Облако точек можно использовать для производства любых линейных и угловых измерений, выполняя их на обычном компьютере. Векторизацией облака точек можно получить 3D-модель объекта в привычной среде проектирования, например - в AutoCAD или AVEVA.

Технология НЛС применима в следующих областях:

    энергетика;

    нефтегазовая отрасль;

    промышленное производство;

    добыча полезных ископаемых;

    промышленное и гражданское строительство;

    инженерные коммуникации;

    железные и автомобильные дороги;

    архитектура, археология, сохранение памятников и исторических объектов.

НЛС незаменимо при проектировании и реконструкции объектов, поскольку является источником достоверной информации об объекте и окружающей его обстановке.

Преимущества технологии НЛС:

    Результат лазерного сканирования: огромный массив измерений (облако точек), представленный в единой системе координат. После постобработки – трёхмерные цифровые модели, сечения и чертежи в масштабах от 1:1.

    Высочайшая детальность получаемых материалов.

    Высокая скорость сбора данных.

    Все данные поступают сразу в цифровом виде.

    Точность регистрации сканов в общем облаке точек порядка 10 мм.

    Съемка происходит дистанционно, что исключает риск травмирования персонала в опасных зонах на производстве.

Сегодня большинство программ для проектирования имеют возможность загружать и использовать облака точек для моделирования и отслеживания коллизий в процессе строительства. По облаку точек, полученному в итоге лазерной съёмки, можно выполнить моделирование элементов объекта с представлением результатов в любую среду автоматизированного проектирования: Autodesk, AVEVA, Bentley, ESRI, Intergraph и другие.

Примеры правильного выбора типа лазерной съёмки

    Можно ли по данным МЛС получить фасадные чертежи? Можно, однако, точность и плотность не соответствуют требованиям для фасадной съёмки. К тому же, привлекаемое оборудование и ресурсы будут в 7 раз дороже ресурсов НЛС. Необходимо использовать технологию НЛС.

    Можно ли с помощью технологии НЛС получить план масштаба 1:2000 будущего водохранилища Богучанской ГЭС? Можно, но это будет неэффективно. Самолёт с оборудованием ВЛС на борту отсканирует быстрее при существенном удешевлении стоимости работ за счёт низких трудозатрат.

    Какую применить технологию для получения плана масштаба 1:500 ровного земельного участка 50Га под будущее строительство? Для этих работ любое ЛС будет малоэффективным по трудозатратам. Такие объекты выполняются обычными топографами, используя методы классической геодезии.

    Можно ли при восстановлении исполнительной документации оборудования цеха газового предприятия обойтись простой геодезией и не использовать дорогие лазерные сканеры? Можно, но такая работа по трудозатратам будет в тысячи раз ёмче и сопряжена со множеством человеческих ошибок. В итоге получится существенное удорожание работ.

    А есть ли такие проекты, в которых возможно совместное использование всех трёх технологий ЛС? Да, возможно любое сочетание, поскольку, работа выполняется в едином координатном пространстве. Например, используя технологию ВЛС, с самолета отсканировали территорию города Пенза, затем, двигаясь по улицам, с помощью технологии МЛС с автомашины сканировали фасады зданий и объекты инфраструктуры, затем, посредством технологии НЛС, со штатива сканировали внутренние помещения домов и сооружений. Посредством геодезических методов, все три массива измерений приводятся к единой СК и обобщённый массив станет детальной трехмерной моделью города на дату производства измерительных работ (съёмки).

Лазерное сканирование представляет собой передовую бесконтактную технологию трёхмерного измерения объектов и поверхностей. По сравнению с традиционными оптическим и спутниковым геодезическими методами технология лазерного сканирования характеризуется феноменальной детальностью, невероятной скоростью, высокой точностью измерений. Данная технология является поистине революционной в сфере инженерных изысканий, поскольку именно его появление предопределило мощный качественный рывок всей отрасли. Сегодня лазерное сканирование широко применяется в архитектуре, промышленности и энергетике, геодезии и маркшейдерии, на объектах транспортной инфраструктуры, в гражданском и промышленном строительстве, добывающей отрасли, археологии, востребована она также и во многих других отраслях производства и народного хозяйства.

Что такое трёхмерное лазерное сканирование?

Что необходимо сделать для построения точной трёхмерной модели здания или чертежа цеха? Безусловно, сначала провести измерения и получить координаты всех объектов (пространственные x,y,z или x,y на плоскости), а затем уже представить их в нужном графическом виде. Именно измерения координат объекта, иначе говоря, съёмка, составляют наиболее трудоёмкую и затратную часть всей работы. Как правило, геодезисты или другие специалисты, проводящие измерения, используют современное оборудование, в первую очередь электронные тахеометры, которые позволяют получать координаты точек с высокой точностью (до нескольких миллиметров).

Принцип работы электронного тахеометра основан на отражении узконаправленного лазерного пучка от отражающей цели и измерении расстояния до неё. Отражателем в общем случае служит специальная призма, которая крепится на поверхности объекта. Определение двух углов (вертикального и горизонтального) и расстояния даёт возможность вычислить трёхмерные пространственные координаты точки отражения. Скорость измерения тахеометра невысока (не более 2 измерений в секунду). Данный метод эффективен при съёмке разреженной, малозагруженной объектами площади, однако даже и в этом случае сложности, с которыми приходится сталкиваться при креплении отражающих призм (на большой высоте или в труднодоступном месте), зачастую оказываются непреодолимыми.

Относительно недавнее появление безотражательных электронных тахеометров, которые работают без специальных отражателей, произвело «бархатную» революцию в геодезии - теперь стало можно проводить измерения без долгих и утомительных поисков лестниц для подъёма отражателя под крышу дома, всевозможных подставок для установки призмы над полом в помещении с высокими потолками и других подобных сложностей - достаточно лишь навестись на необходимую точку, ведь луч может отражаться от любой ровной поверхности.

При использовании метода традиционных тахеометрических измерений, сколько времени, например, потребуется для детальной съёмки фасада здания высотой 20 м или цеха металлургического завода площадью 2 га? Недели, месяцы? Применение безотражательного тахеометра может значительно сократить сроки, но, тем не менее, даже в данном случае специалист проведет за прибором долгие часы и дни. А с какой же плотностью он сможет выполнить съёмку фасада - одна точка на квадратный метр? Навряд ли этого будет достаточно для построения высококачественного подробного чертежа со всеми необходимыми элементами. А теперь представьте, что у вас есть безотражательный тахеометр, который ведёт съёмку автоматически, без участия оператора, со скоростью 5 тысяч измерений в секунду! Ещё совсем недавно такое предложение представлялось не менее фантастичным, чем полет на Луну сто лет назад. Сегодня это стало так же реально, как и следы американских астронавтов или русского «Лунохода» на поверхности нашего небесного соседа. Название этого чуда - лазерное сканирование . Это метод, который позволяет создавать цифровые модели всего окружающего пространства, представляя его набором (облаком) точек с пространственными координатами.

Съёмка со скоростью 5 тысяч точек в секунду была чудом, когда технология лазерного сканирования только начинала завоёвывать мир геодезических изысканий. Сейчас же современные лазерные сканеры позволяют выполнять съёмку с поистине невероятной скоростью - более миллиона точек в секунду ! Это действительно в значительной степени сокращает трудозатраты на полевой этап работ, при этом давая возможность оперативно получать сверхподробные данные результатов измерений с высокой точностью.

Где применяется лазерное сканирование?

Как многие технические новшества и технологии, недавно вышедшие из лабораторий ученых, лазерное сканирование находится только в начале пути освоения разнообразных приложений. Но уже сейчас можно перечислить несколько технологических сфер, в которых 3D лазерные сканеры применяются все более активно и уже достаточно давно стали практически незаменимыми:
- съемка промышленных объектов (заводы, нефтеперерабатывающие заводы, сложное производство);
- съемка объектов энергетики (атомные, гидро- и тепловые электростанции);
- съемка мостов;
- съемка и профилирование тоннелей;
- промышленные измерения (определение объемов резервуаров, жидких и сыпучих материалов);
- горная промышленность;
- реставрация и строительство;
- архитектура и археология.

Еще недавно для составления точных схем и чертежей, максимально детально отражающих реальность, требовалось много трудозатрат, людей и большого набора аппаратуры. Даже с появлением тахеометров в широком доступе, большие или сложные объекты воплощались в чертежах спустя долгое количество времени. GPS-приемники упростили эти задачи, но всё же недостаточно. Однако, инженерную мысль не остановить и сейчас на рынке стали доступны наземные лазерные сканеры. С помощью этих компактных устройств можно проводить работы любой сложности, получая конечную исполнительную съемку в максимально сжатые сроки, а существенно снижается. 3D-сканер, как и все дальномерные лазерные устройства, получает необходимые данные методом измерения расстояния до объекта, а также горизонтальных и вертикальных углов. Важное отличие от большинства электрооптических и электронных устройств заключается в том, что в данном случае процесс полностью автоматизирован.

Лазерный сканер устанавливается на землю на штативе, он приводится в рабочее положение, затем оператор на подключенном компьютере задает границы работ и запускает процесс. Дальше всё делает автоматика, геодезисту остается лишь контролировать происходящее. Преимуществом этой технологии является скорость съемки – за одну секунду устройство может снять пространственные координаты около 1 миллиона точек. Это существенно быстрее работы геодезиста за тахеометром. Такие темпы смогут сократить время на обработку данных и подготовку всех необходимых документов.

Существуют разные виды лазерного сканирования, но наиболее популярным и востребованным сегодня является наземное сканирование. Оно применяется для составления трехмерной модели зданий, сооружений, памятников архитектуры, сложных конструкций, промышленных узлов и многого другого. Интерес к этой технологии постоянно растет и есть смысл заказывать услугу у специалистов, так как оборудование для этих работ остается еще весьма дорогим. Геодезическая компания «ГлавГеоСъёмка» располагает всеми необходимыми инструментами для проведения сканирования, а наши специалисты имеют высокий уровень профессионализма для решения любых задач.

Что такое лазерный сканер?

Основным инструментом геодезиста на данных работах является лазерный сканер. Так как эта технология еще весьма молода, немногие знакомы с ее устройством и не все понимают, что из себя представляет этот аппарат. Сканер – это компактная конструкция, габариты которой несильно превышают размеры тахеометра. Ведущие фирмы, производящие геодезическое оборудование, сегодня занимаются выпуском этих гаджетов, и их совершенствование продолжается. Возможно, в ближайшем будущем мы увидим еще более миниатюрные сканеры, которые можно будет уместить в небольшом футляре. Но пока технологии не позволяют сделать аппарат, который бы был универсальным, подходящим под любые задачи. Например, для подсчетов объемов выемки грунта повышенная точность не важна. Зато становятся важными дальность действия лазера и его степень защиты от напастей природы. То же самое касается и горных выработок, когда нужно лишь подсчитать объем изымаемой земли или полезных ископаемых и вести мониторинг за состоянием выработки.

Совсем другое дело, если речь идет о съемке фасадов жилых зданий, объектов культурного наследия или промышленных комплексов. Расстояние до объектов небольшое, а детальность требуется повышенная. В таких случаях нужно выбирать более точный лазерный сканер, который будет производить больше вычислений и снимать больше точек, создавая более точную трехмерную модель. Эта модель формируется в следствии работы лазерного дальномера путем вычисления пространственных координат. Готовая компьютерная схема выглядит как полноценное цифровое фото, которым можно манипулировать на компьютере. Дальнейший этап обработки зависит от требований заказчика. Могут потребоваться разрезы, профили, развертка определённых участков и элементов, плоские чертежи, исполнительные съемки для подтверждения объемов и иные материалы, которые подготавливаются на этапе камеральной обработки. Важно заранее составить техническое задание, в котором будут оговорены все детали, чтобы не пришлось вызывать специалиста по несколько раз.

Где применяется лазерное сканирование?

Список областей, где лазерный сканер становится всё популярнее, растет с каждым годом. Если еще недавно это были некие эксперименты, то сейчас работы поставлены на поток. Архитекторы и реставраторы часто применяют в своей работе трехмерные модели, изготовленные геодезистами. С помощью компьютерной графики они могут досконально изучить фасады исторических зданий, памятники архитектуры, провести экспертизы, составить проект по реконструкции и подсчитать сметы. Инженеры для расширения и ремонта существующих узлов промышленных систем стали прибегать к услугам 3D-сканеров. Благодаря той детальности, с которой это устройство получает окончательную модель, специалисты могут точнее проанализировать места поломок или подключения новых агрегатов.

Строители на горных выработках получат данные об объемах работ гораздо быстрее, чем это мог бы сделать геодезист за тахеометром – тот объем, что совершается сканером за одну секунду, может отнять у специалиста за электрооптическим прибором не один год. Поскольку процесс автоматизирован, человеческий фактор нивелируется полностью – сканер обрабатывает все мельчайшие детали, на которые может не обратить внимания человек. На самом деле, список сфер еще весьма внушителен – мониторинг зданий и сооружений, наблюдение за деформациями, дорожная съемка, горнодобывающая промышленность, создание и обновление карт и так далее.

Всё больше и больше компаний осознают преимущества использования лазерного сканера. Несмотря на кажущуюся простоту, этот процесс требует профессионализма, как на полевом этапе, так и на этапе камеральной обработки – мало просто запустить прибор и отснять объект, нужно еще и подготовить требуемый чертеж, схему, модель. Именно поэтому вам стоит обратиться в компанию «ГГС-Геодезия» - мы располагаем всем необходимым оборудованием, а наши специалисты являются лучшими в своем деле.

50 лет назад для составления точных схем и чертежей требовалось много людей и большой набор аппаратуры. С появлением тахеометров, сложные объекты стали переносить на чертежи в течение нескольких недель. GPS-приемники упростили эти задачи, но всё же недостаточно.

Сейчас на рынке стали доступны лазерные сканеры. С помощью этих устройств можно проводить геосъемку любой сложности и получать результаты за 1–2 дня. Как все дальномерные лазерные устройства 3D-сканер, получает необходимые данные методом измерения расстояния до объекта, горизонтальных и вертикальных углов. Этот процесс полностью автоматизирован.

Лазерный сканер ставят на штатив и приводится в рабочее положение. Затем оператор на подключенном компьютере задает границы работ и запускает лазерное сканирование . Дальше всё делает автоматика, геодезист только контролирует процесс.

Что такое лазерный сканер

Основной инструмент геодезиста при лазерной геосъемке – сканер.
Это компактная конструкция, ее габариты соответствуют размерам тахеометра.

Сканеры различаются по точности, дальности действия лазера и прочности корпуса. Для подсчетов объемов выемки грунта важным фактором становится дальность действия и степень защиты от плохих погодных условий.

Если речь идет о съемке фасадов жилых зданий, объектов культурного наследия или промышленных комплексов, то главное – точность сканирования и детализация.

Лазерный сканер дальномером вычисляет расстояние до частей объекта и преобразует их в облако точек или 3D-модель. Готовая компьютерная схема выглядит как полноценное цифровое фото, которым можно манипулировать на компьютере.

Следующий этап обработки зависит от указаний заказчика. Могут понадобиться разрезы, профили, развертка участков и элементов, плоские чертежи, исполнительные съемки для подтверждения объемов и иные материалы. Важно заранее составить техническое задание, в котором будут указаны все детали, чтобы не пришлось вызывать специалиста несколько раз.