Интересные факты о фитопланктоне. Растения наших водоемов: фитопланктон Фитопланктон выделяет

На берегу океана ощутимо пахнет йодом. Это запах соли, приносимый ветром с акваторий. Однако помимо него, в воздухе присутствуют и различные газы, синтезируемые микроскопическими растениями - фитоплантконом, произрастающим в толще воды.

У этих крошечных растений имеется множество разновидностей. В идеальных условиях фитопланктон, населяющий морские водоемы в огромном количестве, живет всего один или два дня и, погибая, опускается на дно.

Эти одноклеточные, которые еще называют "морской травой", являются центральным звеном в пищевой цепи океана.

Кроме того, живые микроорганизмы играют важную роль в осуществлении постоянного круговорота углерода в природе.

Только благодаря фитопланктону в атмосфере поддерживается тепловой баланс, а уровень кислорода, необходимый для жизни, находится всегда под контролем.

По этой причине ученые-океанографы отводят фитопланктону одно из главных мест среди всех живых организмов.


Фотосинтез фитопланктона и его значение
Для продолжения жизни, развития и роста все живые существа на Земле - растения и животные - нуждаются в энергии и органической пище.

Потребность в энергии растений обеспечивает солнце. В их организме солнечный свет превращается в химическую энергию, и таким образом неорганические вещества становятся органическими.

Этот процесс носит название фотосинтеза. Животные же удовлетворяют свою потребность в энергии, поедая растения или других животных.

Фитопланктон, подобно наземным растениям, содержит особый хлорофилльный пигмент, позволяющий осуществлять фотосинтез.

Как и наземные растения, "морская трава", синтезируя солнечный свет, увеличивает свою массу и служит важным источником питания для обитателей морей и океанов.

Роль фитопланктона в мировом масштабе
Чем больше в морях и океанах будет фитопланктона, тем больше углекислого газа крошечные растения смогут переработать с помощью фотосинтеза.

Ведь именно наличие углекислого газа в атмосфере и объясняет так называемый парниковый эффект.

Таким образом, обильное развитие фитопланктона в водоемах напрямую связано со снижением углекислого газа в атмосфере нашей планеты.

С одной стороны, "морская трава" оказывает воздействие на содержание углекислого газа в воздухе, с другой - состояние окружающей среды обусловливает увеличение или уменьшение биомассы фитопланктона.

Ученые установили, что ее суммарный объем может за день увеличиться в два раза.

Колебания данных о плотности того или иного вида популяции фитопланктона, о районах его распределения, об увеличении или уменьшении массы одноклеточных организмов, а также другие характеристики - яркий показатель изменений условий окружающей среды в ту или иную сторону, так как фитопланктон обладает способностью очень быстро реагировать на внешнее воздействие.

Роль фитопланктона в обеспечении постоянного круговорота серы в природе

Помимо того, что фитопланктон играет важную роль в смягчении климата и в образовании в атмосфере Земли облаков, он еще синтезирует диметилсульфид, входящий в состав серы.

Этот газ со своеобразным запахом на первый взгляд кажется вредным и загрязняющим окружающую среду химическим веществом, но на самом деле его значение в био-гео-химическом круговороте весьма велико.

Наши знания об этом газе помогут понять не только причины изменения климата в мировом масштабе, но и будут способствовать улучшению политики государств в деле сохранения окружающей среды.

Выработка диметилсульфида зависит от совместного существования - симбиоза различных организмов. Некоторые виды фитопланктона, живущего в поверхностных водах океана, синтезируют начальную молекулу диметилсульфида - диметилсульфид пропонад.

Затем бактерии и фитопланктон способствуют превращению диметилсульфид пропонада в диметилсульфид и другие основные вещества. Часть выработанного диметилсульфида поступает из соленой морской воды в атмосферу и, окисляясь, превращается в тропосфере в сульфатный газ.

Этот газ, образующий облако, собирая вокруг себя молекулы воды, становится ядром конденсации водяных паров. Облака участвуют не только в поддержании баланса солнечной энергии, поступающей на Землю, но и в формировании климата и распределении тепла по ее поверхности.

Ученые полагают, что количество диметилсульфида, выделяемого морями и океанами, составляет 50% от всего количества сульфатного газа, поступающего в атмосферу из биологических источников.

В этом и заключается первостепенное значение фитопланктона в деле формирования климата.


Для обеспечения постоянного круговорота серы в природе соединения серы должны через атмосферу поступать из моря на сушу.

95% естественного сульфатного газа, выделяемого акваториями, приходятся на диметилсульфид, который играет роль ядра, конденсирующего водяные пары, а уже затем из облаков соединения серы вместе с дождем проливаются на сушу.


Радиационный баланс также влияет на формирование земного климата. Одна треть излучаемой солнцем радиации, достигающей Земли, отражается обратно облаками, льдом и снегом.

Другие две трети поступают в атмосферу и в основном поглощаются океанами и горами. Позднее эта солнечная энергия превращается в тепло, и часть ее в виде инфракрасных лучей отражается земной поверхностью и морями обратно.

Прогревая атмосферу, эти лучи возвращаются прямо в космос. Если земная поверхность получает больше энергии, чем выделяет, то на земном шаре наступает потепление, а если наоборот теряет больше, чем получает, то наступает похолодание.


Размер облаков и формирующих их мельчайших частиц воды также влияют на изменение климата на Земле. Чем больше ядро конденсации облака, тем меньше будут формирующие его водяные частицы и во столько же раз будет выше плотность облака.

Это также оказывает влияние на поддержание радиоактивного баланса. Таким образом, становится ясно, что диметилсульфид, выполняя свои функции, является важным фактором в круговороте воды в природе, в установлении количества тепла на земном шаре и в образовании облаков.

Другими словами, Высший Творец отвел диметилсульфиду, вырабатываемому фитопланктоном и поступающему в атмосферу, важную роль в формировании климата и в обеспечении постоянства круговорота серы в природе.

Прежде чем создавать модели, точно отражающие влияние человека и естественных источников на химический состав атмосферы и на климат Земли, необходимо осознать в мировом масштабе: от полюсов до тропических морей - участие диметилсульфида в различных химических реакциях.

Как же противоречивы мы, люди, которые вначале своими руками разрушают гармонию, созданную Аллахом, а затем, пользуясь Его законами, пытаются осознать то, что совершили.

Продукционный цикл фитопланктона

Основными факторами, определяющими первичную продукцию фитопланктона, являются толщина фотического слоя, обеспеченность фитопланктона биогенными элементами и продолжительность продукционного цикла.
В целом указанные параметры зависят от конкретных климатических и гидрологических условий каждого района и проявляются в сроках наступления весеннего развития, которые тесно связаны следовым режимом и окончания продукционного цикла; кроме того, эти параметры определяются запасом биогенных элементов, образовавшимся в фотическом слоек началу весеннего развития и определяемым речным стоком и глубиной зимнего конвективного перемешивания, летней вертикальной турбулентной диффузией, количеством солнечной энергии (зависящей в свою очередь от времени года и климатических факторов), а также структурно-функциональными характеристиками фитопланктона.
Фитопланктон Белого моря представляет собой качественно обедненный планктон Баренцева моря с большой примесью «литоральных» эпифитных и пресноводных форм (Кокин, Кольцова, 1972). В Белом море по сравнению с южной частью Баренцева моря по числу видов преобладают холодолюбивые диатомеи и снижается видовое разнообразие перидиней. Подоле содержания водорослей в составе фитопланктона (63%) Белое море приближается к таким высокоарктическим эпиконтинентальным морям, как Карское (67%) и Лаптевых (64 %), что лишний раз указывает на его арктический характер. Формирование качественного и количественного состава фитопланктона в различные биологические сезоны происходит под влиянием как биотических, так и абиотических факторов среды.


Изменение структурных и функциональных показателей сообщества в течение продукционного цикла можно проследить на примере анализа биологических сезонов в Кандалакшском заливе в 1970 г. (Федоров, Бобров, 1977, Бобров, 1982).
Всего за период наблюдений с 15 апреля по 26 октября в 1970 г. поставлена 51 станция (дважды в неделю). Продукцию определили радиоуглеродным методом склянок на горизонтах 0,2.5, 5, 10, 25, 50, 75 м и у дна. Суммарную солнечную радиацию измеряли пиранометром Янышевского в подводной модификации. Одновременно с постановкой опытов по определению первичной продукции с соответствующих горизонтов проводили батометрические количественные сборы фитопланктона и изучение некоторых гидролого-гидрохимических параметров. При расчете эффективности фотосинтетического процесса данные измерения первичной продукции были выражены в энергетических единицах, исходя из следующего расчета: на фиксацию I моля CO2 расходуется 112 калорий световой энергии, а эта величина соответствует 9.36 кал/мгC.
Переход от численности особей фитопланктона к весовым характеристикам производили по формуле:

Формула получена с учетом того, что в сухой биомассе водорослей содержится 35 % золы (Федоров и др., 1974).
Величины суточных сумм радиации в течение вегетационного периода 1970 г. колебались от 20.6 до 2300 кал/(см". день). Увеличение проникающей в BOAy солнечной радиации в первой декаде мая до 100.6-181.4 кал/(см" - день) совпадает повремени с вскрытиемледового покрова. Некоторое снижение значений суммарной солнечной энергии было вызванометеорологическими условиями Улучшение погодных условий и увеличение длины светового дня привело к практическому совпадению светового максимума (2300 кал/(см". день)) с календарным днем летнего солнцестояния. Последующее падение дневных сумм солнечной радиации имеет довольно плавный характер и обусловливается уменьLEHI HEM продолжительности CBPTOBOTO IH H H BECOTE CONHL kl. К концу вегетационного сезона величина солнечной энергии падает до 20 кал/(см". день).
Таким образом, за весь период наблюдений, охватывающий 183 дня, величина энергии выразилась суммарным значением 22.8 ккал/см". Неучтенная энергия проникающей солнечной радиации в период осении «подледной весны» была получена экстраполяцией и составила 22 ккал/см". Всего за сезон в водоем проникло 25 ккал/см". Последнее значение можно считать годовой суммой, поскольку в зимние месяцы количество энергии солнечной радиации, проникающей под ледяной покров, незначительно, Изучение распространения солнечной энергии в толще воды на протяжении вегетационного периода позволило рассчитать коэффициент поглощения света водой k=0.37-002.
Температура в поверхностном горизонте в течение вегетационного сезона колебалась от - 1.54 до 15.65 °С. С глубиной температурные колебания сглаживались. Весенний период после вскрытия льда характеризуется нарушением гомотермии и установлением отчетливо выраженной стратификации. Зона температурного скачка с ростом проникающей солнечной энергии и соответствующим прогревом ВМ постепенно перемещалась из поверхностного в более глубокие слои. В период максимального значения солнечной энергии термоклин располагался на глубине 25 м и удерживался на этом горизонте до конца сентября. В октябре температурный скачок был расположен глубже и обнаруживалась тенденция к гометермии.
В табл. 5.1 представлены некоторые абиотические характеристики Белого моря, полученные на основе анализа их сезонной LHHaMHK.H.
Анализ вегетационного развития планктона и его продукционHEIM Xapa KTepH cTH K позволяет выделить и установить продолжительность основных периодов вегетации, названных В. Г. Богоровым (1938) биологическими весной, летом и осенью. Для Белого моря характерны все три периода. Их продолжительность для Кандалакшского залива в 1970 г. составила 48, 92 и 43 сут соответственно.


Результаты, характеризующие абсолютные величины продукционного процесса в различные периоды вегетации, представлены в табл. 5.2. Коэффициент Р/Сент рассчитывали как отношение первичной продукции к биомассе (выраженной в углероде) для Bice TO CTO,JI (5a B OIE bil.


Примечание. Над чертой - среднее для сезона, под чертой - пределы колебаний данной величины.
Начало биологической весны отмечено впервой декаде апреля, Весенний подледный климакс (Федоров, 1970a; Кокин, Кольцова, 1972) продолжается около 2 недель и характеризуется устойчивым P/Cфи-коэффициентом. Распределение экониш водорослей соответствует второй модели Мак-Артура (Кокин, Кольцова, 1972).
Весенняя вспышка величин биомассы и численности водорослей начинается подо льдом и после вскрытия льда достигает максимума. Фитопланктон представлен BH La MH JULHETOMOBOTO KOM TIJEKCE: Fragilaria oceanica, Chaetoceros holsa ficus, Nitzschia frigida, Maticula septentrionaliа. Самым массовым видом была F. oceапіса. Фотический слой обогащен биогенными элементами и содержит 86 % всей биомассы фитопланктона, которая, так же как и скорость фотосинтеза, в этот период достигает максимального значения за весь вегетационный период (см. табл. 5.2). Выедание водорослей зоопланктоном (Конопля, 1973) приводит к падению биомассы водорослей и снижению пищевой конкуренции за биогенные элементы, при этом распределение водорослей соответствует уже первой модели Мак-Артура.
Летний максимум развития фитопланктона (первый), обусловленный увеличением числа диатомовых, после спада их численности «подхватывается» перидиниевыми водорослями, образующими второй летний максимум. С середины июля и до конца августа устанавливается летний климакс с устойчивым P/Cфиткоэффициентом. Доминирующими формами биологического лета оказываются Sceletoпeтa costalит и виды рода Chaetoceros (главным образом Ch. сотргеssиs). Первичная продукция в этот период характеризуется средней величиной 0,091 г С/(м", сут), а биомасса - 0.192 гC/м". Развита трофическая конкуренция за биогенные элементы,
Осенняя вспышка фитопланктона выражена слабо. Она наблюдается сконца августа до середины сентября и поросту биомассы ee, Rb Ae/y!"b, "pyAhQ. Только увеличение первичной продукции до 0.125 г С/(м", сут) и Р/Сеит-коэффициента (до 1812) в 20-х числах сентября указывает на кратковременную активацию фитопланктона. В этот период наблюдается развитие Dinophyes пorwegica - холодолюбивого доминанта биологической осени (Федоров, 1969). Период осенней сукцессии приводит экосистему к кратковременному климаксу, который длится вплоть до конца сентября. Дальнейшее снижение температуры и солнечной радиации, а также увеличение слоя перемешивания в связи с нарушением скачка плотности приводит к перераспределению биомассы фитопланктона по глубине и преобладанию процессов деструкции над продукцией.
В целом такой ход продукционного цикла фитопланктона можно ожидать и в других районах моря. Возможные различия будут выражены в сроках начала и конца вегетации фитопланктона, а также в некоторых различиях качественного состава доминирующих видов водорослей (Житина, 1981), что несомненно отразится на результатах продукционных процессов фитопланктона этих частей акватории.
Данные исследований продукционного цикла фитопланктона в 1970 г. позволили уточнить классификацию трофности Белого моря. В качестве дополнительной характеристики была использована эффективность использования солнечной энергии фитопланктоном (см. табл. 5.2), являющаяся интегральной характеристикой состояния фитопланктона, зависящая от комплекса условий окружающей среды и не обнаруживающая прямой связи с биомассой фитопланктона (Федоров, Бобров, 1977).
Если сравнить расчетные значения основных продукционных характеристик фитопланктона с известными данными для различных по продуктивности районов океана (Сорокин, 1973), то можно сделать вывод, что Кандалакшский залив относится к малопродуктивным районам с уровнем продукции фитопланктона 0,05- 0.10 г С/(м*- cут) и эффективностью использования солнечной энергии 0.04 %, характерной для олиготрофных вод. Следовательно, Кандалакшский залив, согласно классификации О. И. Кобленц-Мишке (Кобленц-Мишке и др., 1970), можно отнести к 1-му классу трофности с очень незначительным перемешиванием Глубинных вод.

Ученые установили, что количество морского фитопланктона - микроорганизмов, составляющих основу многих пищевых цепей, - непрерывно сокращается со скоростью около одного процента в год с начала XX века.

Организмы, составляющие фитопланктон, являются автотрофами - то есть они способны синтезировать органические вещества из углекислого газа и воды.

Эта реакция получила название фотосинтеза, и в качестве ее побочного продукта выделяется кислород. Оценивать количество фитопланктона в океанах...

Гидротермальные источники могут выступать "поставщиками" растворенного в воде железа, необходимого фитопланктону, который поглощает углекислый газ и сдерживает таким образом воздействие человека на атмосферу, считают ученые из Франции и Австралии.

Океаны поглощают примерно четверть всех выбросов CO2, связанных с деятельностью человека. Важную роль в этом процессе играет фитопланктон, фотосинтезирующие водоросли и цианобактерии. Фитопланктону для существования необходимо растворенное в воде...

Специалисты, изучающие состояние Мексиканского залива и следящие за ликвидацией последствий произошедшей там экологической катастрофы, обнаружили место, в котором могла скопиться нефть из взорвавшейся в апреле скважины компании BP.

По словам ученых, большая часть черного золота, скорее всего, находится в подводном каньоне у западного побережья штата Флорида.

Как сообщает CBS, в качестве доказательства своей теории эксперты предъявили содержащие нефть пробы почвы со дна каньона. В ходе...

Жизнь в приповерхностных водах океана, от которой зависит и объем поглощаемых океаном парниковых газов, поддерживается активностью подводных вулканов.

Происходит это потому, что подводные вулканы снабжают фитопланктон соединениями железа, необходимыми для фотосинтеза.

Об этом говорится в статье американских ученых в журнале Nature Geoscience, сообщает. Частицы железа - необходимый элемент для большинства пищевых цепочек - очень редки в поверхностных водах океана.

Прежде считали, что...

В рамках своего исследования специалисты изучали содержание выбросов морских гидротермальных источников. Им удалось обнаружить, что в этих выбросах присутствуют органические частицы, которые содержат связанное железо в неокисленном виде.

По словам ученых, подобная подпитка является лучшим удобрением для роста микроскопических водорослей.

Раньше ученым уже было известно, что гидротермальные источники выбрасывают в океан столько же железа, сколько приносят туда этого элемента реки и...

Глобальное потепление, как известно, вызывает таяние шельфовых ледников в Антарктике, однако британские ученые утверждают, что нет худа без добра.

Углекислый газ из атмосферы и океана поглощается микроскопическими морскими растениями.

В свою очередь, фитопланктон служит пищей для разнообразных морских обитателей или же, окончив свои дни «по естественным причинам», опускается на дно, унося с собой накопленный в течение жизни запас углерода.

Группа ученых во главе с Ллойдом Пеком из...

УЛУЧШАТСЯ УСЛОВИЯ ДЛЯ СЕЛЬСКОГО ХОЗЯЙСТВА

Пока потепление благоприятно для сельского хозяйства России: уменьшилось число зим с опасными для озимых культур заморозками, на 5-10 дней увеличился период вегетации растений.

Стало меньше июньских заморозков. Умеренное повышение концентрации углекислого газа в атмосфере способствует повышению урожайности ряда культур.

С другой стороны, исключительно мягкие зимы позволили колорадскому жуку проникнуть на северо-запад России. На востоке РФ все...

Концентрация углекислого газа в водах Северного Ледовитого океана, который в результате потепления освобождается от ледовой корки, уже близка к своему предельному значению, поэтому океан не сможет стать хранилищем для избыточного СО2 в атмосфере, сообщается в научной статье.

До сих пор многие климатологи высказывали надежды, что Северный Ледовитый океан по мере освобождения от ледового покрова начнет вбирать в себя дополнительные количества углекислого газа из воздуха. Сторонники этой теории...

Океанологи обнаружили под арктическими льдами огромные пятна цветущего фитопланктона диаметром от 50 до 100 километров, что указывает на серьезные изменения в экологии арктических вод из-за повышения средних летних температур, говорится в статье.

«Мы считали, что лед является очень эффективным барьером для жизни – в частности, он плохо пропускает свет. Поэтому мы были очень удивлены, когда обнаружили гигантские пятна цветущего фитопланктона под арктическими льдами толщиной более метра...

Группа ученых из Института водных исследований в Монтерей Бэе (Monterey Bay Aquarium Research Institute), штат Калифорния, США, установила, что дрейфующие айсберги действуют на окружающие их воды так, что те начинают поглощать больше двуокиси углерода, чем обычно.

Специалисты обнаружили, что минералы, попадающие в воду при таянии айсберга, приводят к резкому росту фитопланктона, поглощающего CO2. Позже этот планктон съедает криль, а переработанная двуокись углерода оседает на дне океана в его...

Растения наших водоемов: фитопланктон

Фитопланктоном называют микроскопические водоросли, свободно «парящие» в толще воды. Для жизни в таком состоянии в процессе эволюции у них выработался ряд приспособлений, которые способствуют уменьшению относительной плотности клеток (накопление включений, образование газовых пузырьков) и увеличению их трения (отростки различной формы, выросты).
Пресноводный фитопланктон представлен в основном зелеными, сине-зелеными, диатомовыми, пирофитовыми, золотистыми и эвгленовыми водорослями.

Развитие фитопланктонных сообществ происходит с определенной периодичностью и зависит от различных факторов. Например, прирост биомассы микроводорослей до определенного момента происходит пропорционально количеству поглощаемого света. Зеленые и сине-зеленые водоросли наиболее интенсивно размножаются при круглосуточном освещении, диатомовые - при более коротком фотопериоде. Начало вегетации фитопланктона в марте-апреле в немалой степени связано с повышением температуры воды. Диатомовым свойственен низкий температурный оптимум, для зеленых и сине-зеленых - более высокий. Поэтому весной и осенью при температуре воды от 4 до 15 градусов в водоемах доминируют диатомовые водоросли. Увеличение мутности воды, вызываемое минеральными взвесями, снижает интенсивность развития фитопланктона, особенно сине-зеленых. Менее чувствительны к повышению мутности воды диатомовые и протококковые водоросли. В воде, богатой нитратами, фосфатами и силикатами, развиваются преимущественно диатомовые, в то же время зеленые и сине-зеленые менее требовательны к содержанию этих биогенных элементов.

На видовой состав и численность фитопланктона оказывают влияние и продукты жизнедеятельности самих водорослей, поэтому между некоторыми из них существуют, как отмечается в научной литературе, антагонистические взаимоотношения.

Из всего многообразия видов пресноводного фитопланктона диатомовые, зеленые и сине-зеленые водоросли - наиболее многочисленны и особенно ценны в кормовом отношении.
Клетки диатомовых водорослей снабжены двустворчатой оболочкой из кремнезема. Их скопления отличаются характерной, желтовато бурой окраской. Эти микрофиты играют важную роль в питании зоопланктона, но из-за низкого содержания органического вещества их пищевая ценность не столь значительна как, например, у протококковых водорослей.

Отличительный признак зеленых водорослей - типичная зеленая окраска. Их клетки, содержащие ядро и хроматофор, различны по форме, часто снабжены шипами и щетинками. Некоторые имеют красный глазок (стигма). Из представителей этого отдела протококковые водоросли являются объектами массового культивирования (хлорелла, сценедесмус, анкистродесмус). Их клетки отличаются микроскопическими размерами и легко доступны фильтрующим гидробионтам. Калорийность сухого вещества этих водорослей приближается к 7 ккал/г. В них много жира, углеводов, витаминов.
Клетки сине-зеленых водорослей не имеют хроматофоров и ядер и равномерно окрашены в сине-зеленый цвет. Иногда их окраска может приобретать фиолетовый, розовый и другие оттенки. Калорийность сухого вещества достигает 5,4 ккал/г. Белок полноценен по аминокислотному составу, однако из-за слабой растворимости он малодоступен для рыб.
В создании естественной кормовой базы водоемов фитопланктону принадлежит ключевая роль. Микрофиты как первичные продуценты, усваивая неорганические соединения, синтезируют органические вещества, которые утилизируются зоопланктоном (первичный консумент) и рыбами (вторичный консумент). От соотношения крупных и мелких форм в фитопланктоне в значительной мере зависит и структура зоопланктона.

Один из факторов, лимитирующих развитие микрофитов,- содержание в воде растворимого азота (преимущественно аммонийного) и фосфора. Для прудов оптимальной нормой считают 2 мг N/л и 0,5 мг Р/л. Увеличению биомассы фитопланктона способствует дробное внесение за сезон 1 ц/га азотно-фосфорных, а также органических удобрений.
Продукционные возможности водорослей достаточно велики. Применяя соответствующую технологию, с 1 га водной поверхности можно получать до 100 т сухого вещества хлореллы.
Промышленное культивирование водорослей слагается из ряда последовательных этапов с использованием различного рода реакторов (культиваторов) на жидких средах. Средняя урожайность водорослей, по данным ВНИИПРХа, колеблятся от 2 до 18,5 г сухого вещества на 1 м: в сутки.
Мерой продуктивности фитопланктона служит скорость образования органического вещества в процессе фотосинтеза. Врдоросли - основной источник первичной продукции. Первичная продукция - количество органического вещества, синтезируемого эвтрофными организмами за единицу времени,- обычно выражается в ккал/ м в сутки.

Фитоплактон наиболее точно определяет трофический уровень водоема. К примеру, для олиготрофных и мезотрофных вод характерно низкое отношение численности фитопланктона к его биомассе, а для гипертрофных - высокое. Биомасса фитопланктона в гипертрофных водоемах составляет более 400 мг/л, в эвтрофных - 40,1-400 мг/л, в дистрофных - 0,5-1 мг/л.

Антропогенная эвтрофикация - возросшее насыщение водоема биогенами - одна из злободневных проблем. Определить степень активности биологических процессов в водоеме, как и степень его интоксикации, можно с помощью фитопланктонных организмов - индикаторов сапробности. Различают водоемы поли-, мезо- и олигосапробные. По классической системе организмов-индикаторов, созданной Кольквитцем и Марссоном, к полисапробионтам можно, например, отнести Euglena viridis, к альфа-мезосапробионтам - Chlorella vulgaris, к олигосапробионтам - Sy-nura uvella. Поскольку методы гидробиологического контроля качества воды постоянно совершенствуются, список организмов-индикаторов сапробности расширяется и уточняется.
Повышение эвтрофикации, или чрезмерное накопление в водоеме органического вещества, тесно связано с усилением процессов фотосинтеза в фитопланктоне. Массовое развитие водорослей приводит к ухудшению качества воды, ее «цветению».

Цветение - не стихийное явление, оно подготавливается в течение довольно продолжительного времени, иногда двух и более вегетационных периодов. Предпосылки резкого возрастания численности фитопланктона - наличие водорослей в водоеме и их способность к размножению при благоприятных условиях. Развитие диатомовых, например, в значительной мере зависит от содержания в воде железа, лимитирующим фактором для зеленых водорослей служит азот, сине-зеленых - марганец. Цветение воды считается слабым, если биомасса фитопланктона находится в пределах 0,5-0,9 мг/л, умеренным - 1-9,9 мг/л, интенсивным - 10- 99,9 мг/л, а при гиперцветении она превышает 100 мг/л.
Методы борьбы с этим явлением пока еще не настолько совершенны, чтобы можно было считать проблему окончательно решенной. Из гидрологических мер наиболее часто употребляемые и безопасные - увеличение проточности и искусственная аэрация водоема.
В качестве альгицидов (химических средств борьбы с цветением) применяют производные карбамида - диурон и монурон - в дозах 0,1-2 мг/л. Для временной очистки отдельных участков водоемов вносят сернокислый алюминий. Однако прибегать к ядохимикатам следует с осторожностью, так как они потенциально опасны не только для гидробионтов, но и для человека.
В последние годы в этих целях широко используют растительноядных рыб. Так, белый толстолобик потребляет различные виды протококковых, эвгленовых, диатомовых водорослей. Сине-зеленые, продуцирующие при массовом развитии токсические метаболиты, усваиваются им хуже, однако в рационе взрослых особей этой рыбы они могут составлять значительную долю. Фитопланктон охотно поедают также тиляпия, серебряный карась, пестрый толстолобик, а при недостатке основной пищи - сиговые, большеротый буффало, веслонос.
В определенной мере ограничивать интенсивность цветения воды могут и макрофиты. Помимо выделения в воду вредных для фитопланктона веществ, они затеняют поверхность близлежащих участков, препятствуя фотосинтезу.

При расчете кормовой базы водоема и продукции фитопланктона приходится определять видовой состав, численность клеток и биомассу водорослей по содержанию в определенном объеме воды (0,5 или 1 л).
Методика обработки пробы включает в себя несколько этапов (фиксация, концентрирование, приведение к заданному объему). Существует много различных фиксаторов, однако чаще всего употребляется формалин (2-4 мл 40 %-ного раствора формалина на 100 мл воды). Клетки водорослей отстаивают в течение двух недель (если объем пробы меньше 1 л, соответственно укорачивается и период осаждения). Затем верхний слой отстоявшейся воды осторожно удаляют, оставляя для дальнейшей работы 30-80 мл.

Клетки фитопланктона подсчитывают небольшими по объему порциями (0,05 или 0,1 мл), затем по полученным результатам определяют их содержание в 1 л. Если численность клеток того или иного вида водорослей превышает 40 % от их общего количества, то данный вид считается доминирующим.
Определение биомассы фитопланктона - трудоемкий и длительный процесс. На практике для облегчения расчета условно принято считать, что масса 1 млн. клеток пресноводного фитопланктона приблизительно равна 1 мг. Есть и другие экспресс-методы. Учитывая большую роль фитопланктона в экосистеме водоемов, в формировании их рыбопродуктивности, необходимо, чтобы этими методами владели все рыбоводы - от ученых до практиков.
С. Юдин

Растительная часть планктона, распространенного в слое воды (в Мировом океане составляет в среднем 200 м), получающем солнечную энергию (эвфотическая зона). Фитопланктон основной первичный продуцент органические вещества в водоемах, за счет… … Экологический словарь

фитопланктон - Часть планктона, представленная растениями. [ГОСТ 30813 2002] фитопланктон Одноклеточные водоросли, обитающие в верхнем освещённом слое воды. [Словарь геологических терминов и понятий. Томский Государственный Университет] Тематики водоснабжение и … Справочник технического переводчика

ФИТОПЛАНКТОН - (от фито... и планктон) совокупность микроскопических растений (главным образом водорослей), обитающих в толще морских и пресных вод и пассивно передвигающихся под влиянием водных течений. Источник органических веществ в водоеме пищи для др.… … Большой Энциклопедический словарь

ФИТОПЛАНКТОН - ФИТОПЛАНКТОН, совокупность мелких дрейфующих по течению океанических растений, в противоположность ЗООПЛАНКТОНУ совокупности мелких дрейфующих по течению животных организмов. Большая часть фитопланктона микроскопического размера, например,… … Научно-технический энциклопедический словарь

фитопланктон - сущ., кол во синонимов: 1 микрофитопланктон (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

ФИТОПЛАНКТОН - совокупность водорослей, обитающих в верхнем освещенном слое воды. Ф. образуют одноклеточные водоросли разл. систематической принадлежности золотистые, перидиниевые, диатомовые, синезеленые, разножгутиковые, эвгленовые и др., имеющие ряд… … Геологическая энциклопедия

Фитопланктон - совокупность одноклеточных растений, обитающих в фотическом слое океана. Является основным источником новообразования органического вещества в океане. Затрудняет обнаружение подводных лодок. EdwART. Толковый Военно морской Словарь, 2010 … Морской словарь

фитопланктон - Совокупность растительных организмов, входящих в состав планктона (диатомовые, зеленые и синезеленые водоросли) … Словарь по географии

ФИТОПЛАНКТОН - свободноплавающие растительные организмы (водоросли), населяющие поверхностные слои воды. Массовое развитие Ф. в прудах придает воде определенную окраску. Ф. является источником первичной продукции (органического вещества) и источником кислорода… … Прудовое рыбоводство

Книги

  • Фитопланктон Нижней Волги Водохранилища и низовье реки , Трифонова И. (ред.). Общепринятой единой системы биологического анализа качества вод не существует. Краткий анализ экологической ситуации в бассейне р. Волги и других рек показывает необходимость проведения… Купить за 151 руб
  • Фитопланктон Нижней Волги. Водохранилище и низовье реки , . В книге представлены лимнологические особенности водохранилищ Нижней Волги - Куйбышевского, Саратовского и Волгоградского, а также физико-географическая характеристика региона в целом. Дано…