Измерение физических величин. Обработка результатов прямых измерений Пример порядка обработки прямых измерений

Любые измерения всегда производятся с какими-то погрешностями, связанными с ограниченной точностью измерительных приборов, неправильным выбором, и погрешностью метода измерений, физиологией экспериментатора, особенностями измеряемых объектов, изменением условий измерения и т.д. Поэтому в задачу измерения входит нахождение не только самой величины, но и погрешности измерения, т.е. интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Например, при измерении отрезка времени t секундомером с ценой деления 0,2 с можно сказать, что истинное значение его находится в интервале от с до
с. Таким образом, измеряемая величина всегда содержит в себе некоторую погрешность
, где и X – соответственно истинное и измеренное значения исследуемой величины. Величина
называется абсолютной погрешностью (ошибкой) измерения, а выражение
, характеризующее точность измерения, называется относительной погрешностью.

Вполне естественно стремление экспериментатора произвести всякое измерение с наибольшей достижимой точностью, однако такой подход не всегда целесообразен. Чем точнее мы хотим измерить ту ил иную величину, тем сложнее приборы мы должны использовать, тем больше времени потребуют эти измерения. Поэтому точность окончательного результата должна соответствовать цели проводимого эксперимента. Теория погрешностей дает рекомендации, как следует вести измерения и как обрабатывать результаты, чтобы величина погрешности была минимальной.

Все возникающие при измерениях погрешности обычно разделяют на три типа – систематические, случайные и промахи, или грубые ошибки.

Систематические погрешности обусловлены ограниченной точностью изготовления приборов (приборные погрешности), недостатками выбранного метода измерений, неточностью расчетной формулы, неправильной установкой прибора и т.д. Таким образом, систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Величина этой погрешности систематически повторяется либо изменяется по определенному закону. Некоторые систематические ошибки могут быть исключены (на практике этого всегда легко добиться) путем изменения метода измерений, введение поправок к показаниям приборов, учета постоянного влияния внешних факторов.

Хотя систематическая (приборная) погрешность при повторных измерениях дает отклонение измеряемой величины от истинного значения в одну сторону, мы никогда не знаем в какую именно. Поэтому приборная погрешность записывается с двойным знаком

Случайные погрешности вызываются большим числом случайных причин (изменением температуры, давления, сотрясения здания и т.д.), действия которых на каждое измерение различно и не может быть заранее учтено. Случайные погрешности происходят также из-за несовершенства органов чувств экспериментатора. К случайным погрешностям относятся и погрешности обусловленные свойствами измеряемого объекта.

Исключить случайны погрешности отдельных измерений невозможно, но можно уменьшить влияние этих погрешностей на окончательный результат путем проведения многократных измерений. Если случайная погрешность окажется значительно меньше приборной (систематической), то нет смысла дальше уменьшать величину случайной погрешности за счет увеличения числа измерений. Если же случайная погрешность больше приборной, то число измерений следует увеличить, чтобы уменьшить значение случайной погрешности и сделать ее меньше или одного порядка с погрешностью прибора.

Промахи, или грубые ошибки, - это неправильные отсчеты по прибору, неправильная запись отсчета и т.п. Как правило, промахи, обусловленные указанными причинами хорошо заметны, так как соответствующие им отсчеты резко отличаются от других отсчетов. Промахи должны быть устранены путем контрольных измерений. Таким образом, ширину интервала в котором лежат истинные значения измеряемых величин, будут определять только случайные и систематические погрешности.

2 . Оценка систематической (приборной) погрешности

При прямых измерениях значение измеряемой величины отсчитывается непосредственно по шкале измерительного прибора. Ошибка в отсчете может достигать нескольких десятых долей деления шкалы. Обычно при таких измерениях величину систематической погрешности считают равной половине цены деления шкалы измерительного прибора. Например, при измерении штангенциркулем с ценой деления 0,05 мм величина приборной погрешности измерения принимают равной 0,025 мм.

Цифровые измерительные приборы дают значение измеряемых ими величин с погрешностью, равной значению одной единицы последнего разряда на шкале прибора. Так, если цифровой вольтметр показывает значение20,45 мВ, то абсолютная погрешность при измерении равна
мВ.

Систематические погрешности возникают и при использовании постоянных величин, определяемых из таблиц. В подобных случаях погрешность принимается равной половине последнего значащего разряда. Например, если в таблице значение плотности стали дается величиной, равной 7,9∙10 3 кг/м 3 , то абсолютная погрешность в этом случае равна
кг/м 3 .

Некоторые особенности в расчете приборных погрешностей электроизмерительных приборов будут рассмотрены ниже.

При определении систематической (приборной) погрешности косвенных измерений функциональной величины
используется формула

, (1)

где - приборные ошибки прямых измерений величины , - частные производные функции по переменной .

В качестве примера, получим формулу для расчета систематической погрешности при измерении объема цилиндра. Формула вычисления объема цилиндра имеет вид

.

Частные производные по переменным d и h будут равны

,
.

Таким образом, формула для определения абсолютной систематической погрешности при измерении объема цилиндра в соответствии с (2. ..) имеет следующий вид

,

где
и
приборные ошибки при измерении диаметра и высоты цилиндра

3. Оценка случайной погрешности.

Доверительный интервал и доверительная вероятность

Ля подавляющего большинства простых измерений достаточно хорошо выполняется так называемый нормальный закон случайных погрешностей (закон Гаусса) , выведенный из следующих эмпирических положений.

    погрешности измерений могут принимать непрерывный ряд значений;

    при большом числе измерений погрешности одинаковой величины, но разного знака встречаются одинаково часто,

    чем больше величина случайной погрешности, тем меньше вероятность ее появления.

График нормального закона распределения Гаусса представлен на рис.1. Уравнение кривой имеет вид

, (2)

где
- функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки
, σ – средняя квадратичная ошибка.

Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

, (3)

где - результат i -го измерения; - среднее арифметическое полученных значений; n – число измерений.

Чем больше число измерений, тем меньше и тем больше оно приближается к σ. Если истинное значение измеряемой величины μ, ее среднее арифметическое значение, полученное в результате измерений , а случайная абсолютная погрешность , то результат измерений запишется в виде
.

Интервал значений от
до
, в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку является случайной величиной, то истинное значение попадает в доверительный интервал с вероятностью α, которая называется доверительной вероятностью, или надежностью измерений. Эта величина численно равна площади заштрихованной криволинейной трапеции. (см. рис.)

Все это справедливо для достаточно большого числа измерений, когда близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ, используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента , дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .

. (4)

Распределение вероятностей этой величины не зависит от σ 2 , а существенно зависит от числа опытов n . С увеличением числа опытов n распределение Стьюдента стремится к распределению Гаусса.

Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n , и столбца, соответствующего доверительной вероятности α

Таблица 1.

Пользуясь данными таблицы, можно:

    определить доверительный интервал, задаваясь определенной вероятностью;

    выбрать доверительный интервал и определить доверительную вероятность.

При косвенных измерениях среднюю квадратичную ошибку среднего арифметического значения функции вычисляют по формуле

. (5)

Доверительный интервал и доверительная вероятность определяются так же, как и в случае прямых измерений.

Оценка суммарной погрешности измерений. Запись окончательного результата.

Суммарную погрешность результата измерений величины Х будем определять как среднее квадратичное значение систематической и случайной погрешностей

, (6)

где δх – приборная погрешность, Δх – случайная погрешность.

В качестве Х может быть как непосредственно, так и косвенно измеряемая величина.

, α=…, Е=… (7)

Следует иметь в виду, что сами формулы теории ошибок справедливы для большого число измерений. Поэтому значение случайной, а следовательно, и суммарной погрешности определяется при малом n с большой ошибкой. При вычислении Δх при числе измерений
рекомендуется ограничиваться одной значащей цифрой, если она больше 3 и двумя, если первая значащая цифра меньше 3. Например, если Δх = 0,042, то отбрасываем 2 и пишем Δх =0,04, а если Δх =0,123, то пишем Δх =0,12.

Число разрядов результата и суммарной погрешности должно быть одинаковым. Поэтому среднее арифметическое погрешности должно быть одинаковым. Поэтому среднее арифметическое вычисляется вначале на один разряд больше, чем измерение, а при записи результата его значение уточняется до числа разрядов суммарной ошибки.

4. Методика расчета погрешностей измерений.

Погрешности прямых измерений

При обработке результатов прямых измерений рекомендуется принять следующий порядок выполнение операций.

. (8)


.

.

    Определяется суммарная погрешность

    Оценивается относительная погрешность результата измерений

.

    Записывается окончательный результат в виде

, с α=… Е=…%.

5. Погрешность косвенных измерений

При оценке истинного значения косвенно измеряемой величины , являющейся функцией других независимых величин
, можно использовать два способа.

Первый способ используется, если величина y определяется при различных условиях опыта. В этом случае для каждого из значений вычисляется
, а затем определяется среднее арифметическое из всех значений y i

. (9)

Систематическая (приборная) погрешность находится на основании известных приборных погрешностей всех измерений по формуле. Случайная погрешность в этом случае определяется как ошибка прямого измерения.

Второй способ применяется, если данная функция y определяется несколько раз при одних и тех же измерений. В этом случае величина рассчитывается по средним значениям . В нашем лабораторном практикуме чаще используется второй способ определения косвенно измеряемой величины y . Систематическая (приборная) погрешность, как и при первом способе, находится на основании известных приборных погрешностей всех измерений по формуле

Для нахождения случайной погрешности косвенного измерения вначале рассчитываются средние квадратичные ошибки среднего арифметического отдельных измерений. Затем находится средняя квадратичная ошибка величины y . Задание доверительной вероятности α, нахождение коэффициента Стьюдента , определение случайной и суммарной ошибок осуществляются так же, как и в случае прямых измерений. Аналогичным образом представляется результат всех расчетов в виде

, с α=… Е=…%.

6. Пример оформления лабораторной работы

Лабораторная работа №1

ОПРЕДЕЛЕНИЕ ОБЪЕМА ЦИЛИНДРА

Принадлежности: штангенциркуль с ценой деления 0,05 мм, микрометр с ценой деления 0,01 мм, цилиндрическое тело.

Цель работы: ознакомление с простейшими физическими измерениями, определение объема цилиндра, расчет погрешностей прямых и косвенных измерений.

Порядок выполнения работы

Провести не менее 5 раз измерения штангенциркулем диаметра цилиндра, а микрометром его высоту.

Расчетная формула для вычисления объема цилиндра

где d – диаметр цилиндра; h – высота.

Результаты измерений

Таблица 2.

;

Абсолютная погрешность

;
.

5. Относительная погрешность, или точность измерений

; Е = 0,5%.

6. Запись окончательного результата

Окончательный результат для исследуемой величины записывается в виде

, Е = 0,5%.

Примечание. В окончательной записи число разрядов результата и абсолютной погрешности должно быть одинаковым.

6. Графическое представление результатов измерений

Результаты физических измерений очень часто представляют в графической форме. Графики обладают рядом важных преимуществ и ценных свойств:

а) дают возможность определить вид функциональной зависимости и пределы, в которых она справедлива;

б) позволяют наглядно проводить сравнение экспериментальных данных с теоретической кривой;

в) при построении графика сглаживают скачки в ходе функции, возникающие за счет случайных ошибок;

г) дают возможность определять некоторые величины или проводить графическое дифференцирование, интегрирование, решение уравнения и др.

Рафики, как правило, выполняются на специальной бумаге (миллиметровой, логарифмической, полулогарифмической). Принято по горизонтальной оси откладывать независимую переменную, т.е. величину, значение которой задает сам экспериментатор, а по вертикальной оси – ту величину, которую он при этом определяет. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями x и у. При выборе начала координат следует руководствоваться тем, чтобы полностью использовалась вся площадь чертежа (рис.2.).

На координатах осях графика указываются не только названия или символы величин, но и единицы их измерения. Масштаб по осям координат следует выбирать так, чтобы измеряемые точки располагались по всей площади листа. При этом масштаб должен быть простым, чтобы при нанесении точек на график не производить арифметических подсчетов в уме.

Экспериментальные точки на графике должны изображаться точно и ясно. Точки, полученные при различных условиях эксперимента (например, при нагревании и охлаждении), полезно наносить разными цветами или разными значками. Если известна погрешность эксперимента, то вместо точки лучше изображать крест или прямоугольник, размеры которого по осям соответствуют этой погрешности. Не рекомендуется соединять экспериментальные точки между собой ломаной линией. Кривую на графике следует проводить плавно, следя за тем, чтобы экспериментальные точки располагались как выше, так и ниже кривой, как показано на рис.3.

При построении графиков помимо системы координат с равномерным масштабом применяют так называемые функциональные масштабы. Подобрав подходящие функции x и y, можно на графике получить более простую линию, чем при обычном построении. Часто это бывает нужно при подборе к данному графику формулы для определения его параметров. Функциональные масштабы применяют также в тех случаях, когда на графике нужно растянуть или сократить какой-либо участок кривой. Чаще всего из функциональных масштабов используют логарифмический масштаб (рис.4).

Документ

От конкретных условий, требований и возможностей оценки погрешности результатов измерений . Согласно общим положениям информационной теории...

  • Погрешности измерений

    Документ

    В.И.Ивероновой. М., Наука, 1967. 4. П.В.Новицкий, И.А.Зограф. Оценка погрешностей результатов измерений . Л., Энергоатомиздат, 1991. 5. Лабораторные работы по...

  • Методические указания по определению погрешностей при измерениях в лабораторном практикуме по физике

    Методические указания

    ... измерения искомой вели­чины в обязательном порядке входит оценка погрешности полу­ченного результата . Без такой оценки результат ... значение абсолютной погрешности и сам результат измерений . Как правило, точность оценки погрешности оказывается очень...

  • № измерения

    В общем случае порядок обработки результатов прямых измерений следующий (предполагается, что систематических ошибок нет).

    Случай 1. Число измерений меньше пяти.

    x , определяемый как среднее арифметическое от результатов всех измерений, т.е.

    2) По формуле (12) вычисляются абсолютные погрешности отдельных измерений

    3) По формуле (14) определяется средняя абсолютная погрешность

    .

    4) По формуле (15) вычисляют среднюю относительную погрешность результата измерений

    5) Записывают окончательный результат по следующей форме:

    Случай 2 . Число измерений свыше пяти.

    1) По формуле (6) находится средний результат

    2) По формуле (12) определяются абсолютные погрешности отдельных измерений

    3) По формуле (7) вычисляется средняя квадратическая погрешность единичного измерения

    .

    4) Вычисляется среднее квадратическое отклонение для среднего значения измеряемой величины по формуле (9).

    5) Записывается окончательный результат по следующей форме

    Иногда случайные погрешности измерений могут оказаться меньше той величины, которую в состоянии зарегистрировать измерительный прибор (инструмент). В этом случае при любом числе измерений получается один и тот же результат. В подобных случаях в качестве средней абсолютной погрешности принимают половину цены деления шкалы прибора (инструмента). Эту величину иногда называют предельной или приборной погрешностью и обозначают (для нониусных приборов и секундомера равна точности прибора).

    Оценка достоверности результатов измерений

    В любом эксперименте число измерений физической величины всегда по тем или иным причинам ограничено. В связи с этим может быть поставлена задача оценить достоверность полученного результата. Иными словами, определить, с какой вероятностью можно утверждать, что допущенная при этом оши­бка не превосходит наперед заданную величину ε. Упомянутую вероятность принято называть доверительной вероятностью. Обозначим её буквой .



    Может быть поставлена и обратная задача: определить границы интервала , чтобы с заданной вероятностью можно было утверждать, что истинное значение измерений величины не выйдет за пределы указанного, так называемого доверительного интервала.

    Доверительный интервал характеризует точность полученного результата, а доверительная вероятность - его надёжность. Методы решения этих двух групп задач имеются и особенно подробно разработаны для случая, когда погрешности измерений распределены по нормальному закону. Теория ве­роятностей даёт также методы для определения числа опытов (повторных измерений), при которых обеспечивается заданная точность и надёжность ожидаемого результата. В данной работе эти методы не рассматриваются (ограничимся только их упоминанием), так как при выполнении лабораторных работ подобные задачи обычно не ставятся.

    Особый интерес, однако, представляет случай оценки достоверности результата измерений физических величин при весьма малом числе повторных измерений. Например, . Это именно тот случай, с которым мы часто встречаемся при выполнении лабораторных работ по физике. При решении указанного рода задач рекомендуется использовать метод, в основе которого лежит распределение (закон) Стьюдента.

    Для удобства практического применения рассматриваемого метода имеются таблицы, с помощью которых можно определить доверительный интервал , соответствующий заданной доверительной вероятности или решить обратную задачу.

    Ниже приведены те части упомянутых таблиц, которые могут потребоваться при оценке результатов измерений на лабораторных занятиях.

    Пусть, например, произведено равноточных (в одинаковых условиях) измерений некоторой физической величины и вычислено её среднее значение . Требуется найти доверительный интервал , соответствующий заданной доверительной вероятности . Задача в общем виде решается так.

    По формуле с учётом (7) вычисляют

    Затем для заданных значений n и находят по таблице (табл. 2) величину . Искомое значение вычисляется на основе формулы

    При решении обратной задачи вначале вычисляют по формуле (16) параметр . Искомое значение доверительной вероятности берётся из таблицы (табл. 3) для заданного числа и вычисленного параметра .

    Таблица 2. Значение параметра при заданных числе опытов

    и доверительной вероятности

    n 0,5 0,6 0,7 0,8 0,9 0,95 0.98 0,99 0.995 0,999
    1,000 1,376 1,963 3,08 6,31 12,71 31,8 63,7 127,3 637,2
    0,816 1,061 1,336 1,886 2,91 4,30 6,96 9,92 14,1 31,6
    0,765 0,978 1,250 1,638 2,35 3,18 4,54 5,84 7,5 12,94
    0,741 0,941 1,190 1,533 2,13 2,77 3,75 4,60 5,6 8,61
    0,727 0,920 1,156 1,476 2,02 2,57 3,36 4,03 4,77 6,86
    0.718 0,906 1,134 1,440 1,943 2,45 3,14 3,71 4,32 5,96
    0,711 0,896 1,119 1,415 1,895 2,36 3,00 3,50 4,03 5,40
    0,706 0,889 1,108 1,397 1,860 2,31 2,90 3,36 3,83 5,04
    0,703 0,883 1,110 1,383 1,833 2,26 2,82 3,25 3,69 4,78

    Таблица 3 Значение доверительной вероятности при заданном числе опытов n и параметре ε

    n 2,5 3,5
    0,705 0,758 0,795 0,823
    0,816 0,870 0,905 0,928
    0,861 0,912 0,942 0,961
    0,884 0,933 0,960 0,975
    б 0,898 0,946 0,970 0,983
    0,908 0,953 0,976 0,987
    0,914 0,959 0,980 0,990
    0,919 0.963 0,983 0,992
    0,923 0,969 0,985 0,993

    Обработка результатов косвенных измерений

    Очень редко содержание лабораторной работы или научного эксперимента сводится к получению результата прямого измерения. Большей частью искомая величина является функцией нескольких других величин.

    Задача обработки опытов при косвенных измерениях заключается в том, чтобы на основании результатов прямых измерений некоторых величин (аргументов), связанных с искомой величиной определённой функциональной зависимостью, вычислить наиболее вероятное значение искомой величины и оценить погрешность косвенных измерений.

    Существует несколько способов обработки косвенных измерений. Рассмотрим следующие два способа.

    Пусть по методу косвенных измерений определяется некоторая физическая величина.

    Результаты прямых измерений ее аргументов х, у, z приведены в табл. 4.

    Таблица 4

    Номер опыта x y z
    n

    Первый способ обработки результатов заключается в следующем. С помощью расчетной (17) формулы вычисляют искомую величину по результатам каждого опыта

    (17)

    Описанный способ обработки результатов применим, в принципе, во всех без исключения случаях косвенных измерений. Однако наиболее целесообразно применять его тогда, когда число повторных измерений аргументов небольшое, а расчётная формула косвенно измеряемой величины сравнительно проста.

    При втором способе обработки результатов опытов вначале вычисляют, используя результаты прямых измерений (табл. 4), средние арифметические значения каждого из аргументов, а также погрешности их измерения. Подставив , , ,... в расчетную формулу (17), определяют наиболее вероятное значе­ние измеряемой величины

    (17*)

    и выполняют оценку результатов косвенных измерений величины.

    Второй способ обработки результатов применим лишь к таким косвенным измерениям, при которых истинные значения аргументов от измерения к измерению остаются постоянными.

    Погрешности косвенных измерений величины зависят от погрешностей прямых измерений её аргументов.

    Если систематические погрешности измерений аргументов исключены, а случайные погрешности измерения этих аргументов не зависят друг от друга (некореллированы), то ошибка косвенного измерения величины определяется в общем случае по формуле:

    , (18)

    где , , - частные производные; , , – средние квадратические погрешности измерения аргументов , , , …

    Относительная погрешность вычисляется по формуле

    (19)

    В ряде случаев значительно проще (с точки зрения обработки результатов измерений) вычислить вначале относительную погрешность , а затем, используя формулу (19), абсолютную погрешность результата косвенного измерения:

    При этом формулы для вычисления относительной погрешности результата составляются в каждом отдельном случае в зависимости от того, каким образом искомая величина связана своими аргументами. Имеются таблицы формул относительных погрешностей для наиболее часто встречающихся видов (структуры) расчётных формул (табл. 5).

    Таблица 5 Определение относительной погрешности , допускаемой при вычислении приближенной величины , зависящей от приближённой .

    Характер связи главной величины с приближенными величинами Формула для определения относительной погрешности
    Сумма:
    Разность:
    Произведение:
    Частное:
    Степень:

    Изучение нониусов

    Измерение длины производится с помощью масштабных линеек. Для увеличения точности измерения пользуются вспомогательными подвижными шкалами - нониусами. Например, если масштабная линейка разделена на миллиметры, т. е. цена одного деления линейки 1 мм , то с помощью нониуса можно повысить точность измерении по ней до одной десятой или более мм .

    Нониусы бывают линейными и круговыми. Разберем устройство линейного нониуса. На нониусе делений, которые в сумме равны 1 делению основной шкалы. Если - цена деления нониуса, - цена деления масштабной линейки, то можно написать

    . (21)

    Отношение называется точностью нониуса. Если, например, b =1 мм , a m =10, то точность нониуса 0,1 мм .

    Из рис. 3 видно, что искомая длина тела равна:

    где k - целое число делений масштабной линейки; - число делений миллиметра, которое необходимо определить с помощью нониуса.

    Обозначим через п - число делений нониуса, совпадающее с любым делением масштабной линейки. Следовательно:

    Таким образом, длина измеряемого тела равна целому числу k мм масштабной линейки плюс десятые доли числа миллиметров. Аналогично устроены и круговые нониусы.

    Нижняя шкала наиболее распространенного микрометра представляет собой обычную миллиметровую шкалу (рис. 4).

    Риски верхней шкалы сдвинуты по отношению к рискам нижней шкалы на 0,5 мм . При повороте микрометрического винта на 1 оборот барабан вместе со всем винтом передвигается на 0,5 мм , открывая или закрывая поочередно риски то верхней, то нижней шкалы. Шкала на барабане содержит 50 делений, таким образом, точность микрометра .

    При отсчёте по микрометру необходимо учитывать целое число рисок верхней и нижней шкалы (умножая это число на 0,5 мм ) и номер деления барабана n , который в момент отсчёта совпадает с осью шкалы стебля D , умножая его на точность микрометра. Иными словами, числовое значение L длины из­меряемого микрометром предмета находят по формуле:

    (23)

    Для того чтобы измерить длину предмета или диаметр отверстия штангенциркулем (рис. 3), следует поместить предмет между неподвижной и "подвижной ножками и или развести выступы по диаметру внутри измеряемого отверстия. Движение перемещающегося устройства штангенциркуля проводится без сильного нажима. Вычисление длины производят по формуле (23), снимая отсчёт по основной шкале и нониусу.

    В микрометре для измерения длины предмет зажимают между упором и микрометрическим винтом (рис. 5), вращая последний только с помощью головки , до срабатывания трещотки.

    3. Вычислите среднее значение диаметра , среднеквадратическое отклонение по формулам методики обработки результатов прямых измерений (случай 2).

    4. Определите границу доверительного интервала для заданной доверительной вероятности (задается преподавателем) и числа опытов n .

    Сравните приборную погрешность с доверительным интервалом. В окончательный результат запишите большее значение .

    Задание 2 . Определение объема цилиндра с помощью микрометра и штангенциркуля.

    1. Измерьте не менее 7 раз диаметр цилиндра микрометром, а высоту штангенциркулем. Результаты измерений запишите в таблицу (табл. 7).

    Таблица 7

    n

    . (27)

    Если они отличаются хотя бы на порядок, то берется наибольшая ошибка.

    9. Окончательный результат запишите в виде:

    . (28)

    Примечание . При расчёте приборной ошибки по формуле (25) одновременно учитывается и ошибка, обусловленная округлением чисел, так как они подчиняются одному и тому же закону распределения.

    Контрольные вопросы

    1. Опишите известные Вам виды измерений.

    2. Дайте определение систематической и случайной ошибкам. В чём состоит их основное различие?

    3. Какие виды ошибок подчиняются равномерному распределению?

    4. Опишите порядок обработки результатов прямых (косвенных) измерений.

    5. Почему при измерении объема цилиндра Вам рекомендовалось диаметр измерять микрометром, а высоту - штангенциркулем?

    6. Относительная ошибка измерения массы тела составляет 1%, а его скорости-2%. С какой относительной ошибкой можно по таким данным вычислить кинетическую энергию тела?

    Лабораторная работа №2

    Номер измерения

    Результатов измерений

    Основные понятия, термины и определения

    Измерение – определение значения физической величины опытным путем. Измерения подразделяются на две группы: прямые и косвенные. Прямое измерение - нахождение значения физической величины непосредственно с помощью приборов. Косвенное измерение – нахождение искомой величины на основании известной зависимости между этой величиной и величинами, найденными в процессе прямых измерений. Например, для определения ускорения равноускоренного движения тела можно использовать формулу , гдеS - пройденный путь, t – время движения. Путь и время движения находят непосредственно в ходе эксперимента, то есть в процессе прямых измерений, а ускорение можно рассчитать по приведенной формуле и, следовательно, его значение будет определено в результате косвенного измерения.

    Отклонение результата прямого или косвенного измерения от истинного значения искомой величины называется погрешностью измерения . Погрешности прямых измерений обусловлены возможностями измерительных приборов, методикой измерений и условиями проведения эксперимента. Погрешности косвенных измерений обусловлены “переносом” на искомую величину погрешностей прямых измерений тех величин, на основе которых она рассчитывается. По способу числового выражения различают абсолютные погрешности (ΔА ), выраженные в единицах измеряемой величины (А ), и относительные погрешности δA =(ΔA /A )·100%, выраженные в процентах.

    Существуют погрешности трех видов: систематические, случайные и промахи.

    Под систематическими погрешностями понимают те, причина возникновения которых остается постоянной или закономерно изменяется в течение всего процесса измерения. Источниками систематических погрешностей обычно являются неправильная юстировка приборов, закономерно изменяющиеся внешние факторы, неправильно выбранная методика измерений. Для выявления и исключения систематических погрешностей необходимо предварительно проанализировать условия измерения, провести контрольные поверки измерительных приборов и сопоставить получаемые результаты с данными более точных измерений. К неисключаемым систематическим погрешностям, которые необходимо учитывать при обработке результатов, относят погрешности используемых приборов и инструментов (приборные погрешности).

    Приборная погре шность равна половине цены деления прибора ΔA пр = ЦД/2 (для приборов типа линейки, штангенциркуля, микрометра) или определяется по классу точности прибора (для стрелочных электроизмерительных приборов).

    Под классом точности прибора γ понимают величину, равную:

    где ΔA пр  приборная погрешность (максимальная допустимая абсолютная погрешность, одинаковая для всех точек шкалы); A max  предел измерения (максимальное значение показаний прибора).

    Для электронных приборов формулы для расчета приборной погрешности приводятся в паспорте прибора.

    Случайные погрешности возникают в результате действия различных случайных факторов. Этот вид погрешностей обнаруживается при многократном измерении одной и той же величины в одинаковых условиях с помощью одних и тех же приборов: результаты серии измерений несколько отличаются друг от друга случайным образом. Вклад случайных погрешностей в результат измерения учитывают в процессе обработки результатов.

    Под промахами понимают большие погрешности, резко искажающие результат измерения. Они возникают как следствие грубых нарушений процесса измерений: неисправности приборов, ошибок экспериментатора, скачков напряжения в электрической цепи и т.д. Результаты измерений, содержащие промахи, должны быть отброшены в процессе предварительного анализа.

    С целью выявления промахов и последующего учета вклада случайных и приборных погрешностей прямые измерения искомой величины проводят несколько раз в одних и тех же условиях, то есть проводят серию равноточных прямых измерений. Целью последующей обработки результатов серии равноточных измерений является:

    Результат прямого или косвенного измерения должен быть представлен следующим образом:

    А= (‹А› ± ΔА ) ед.изм., α = …,

    где ‹А› – среднее значение результата измерений, ΔА – полуширина доверительного интервала, α – доверительная вероятность. При этом необходимо учитывать, что численное значение ΔА должно содержать не более двух значащих цифр, а значение ‹А› должно оканчиваться цифрой того же разряда, что и ΔА .

    Пример: Результат измерения времени движения тела имеет вид:

    t = (18,5 ± 1,2) c; α = 0,95.

    Из этой записи следует, что с вероятностью 95 % истинное значение времени движения лежит в интервале от 17,3 с до 19,7 с.

    ПОГРЕШНОСТИ ИЗМЕРЕНИЙ ФИЗИЧЕСКИХ ВЕЛИЧИН И

    ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

    Измерением называют нахождение значений физических величин опытным путем с помощью специальных технических средств. Измерения бывают прямые и косвенные. При прямом измерении искомое значение физической величины находят непосредственно с помощью измерительных приборов (например, измерение размеров тел с помощью штангенциркуля). Косвенным называют измерение, при котором искомое значение физической величины находят на основании известной функциональной зависимости между измеряемой величиной и величинами, подвергаемыми прямым измерениям. Например, при определении объема V цилиндра измеряют его диаметр D и высоту Н, а затем по формуле p D 2 /4 вычисляют его объем.

    Вследствие неточности измерительных приборов и трудности учета всех побочных явлений при измерениях неизбежно возникают погрешности измерений. Погрешностью или ошибкой измерения называют отклонение результата измерения от истинного значения измеряемой физической величины. Погрешность измерения обычно неизвестна, как неизвестно и истинное значение измеряемой величины. Поэтому задача элементарной обработки результатов измерений заключается в установлении интервала, внутри которого с заданной вероятностью находится истинное значение измеряемой физической величины.

    Классификация погрешностей измерений

    Погрешности разделяют на три вида:

    1) грубые или промахи,

    2) систематические,

    3) случайные .

    Грубые погрешности - это ошибочные измерения, возникающие в результате небрежности отсчета по прибору, неразборчивости записи показаний. Например, запись результата 26,5 вместо 2,65; отсчет по шкале 18 вместо 13 и т.д. При обнаружении грубой ошибки результат данного измерения следует сразу отбросить, а само измерение повторить.

    Систематические погрешности - ошибки, которые при повторных измерениях остаются постоянными или изменяются по определенному закону. Эти погрешности могут быть обусловлены неправильным выбором метода измерения, несовершенством или неисправностью приборов (например, измерения с помощью прибора, у которого смещен нуль). Для того, чтобы максимально исключить систематические погрешности, следует всегда тщательно анализировать метод измерений, сверять приборы с эталонами. В дальнейшем будем считать, что все систематические погрешности устранены, кроме тех, которые вызваны неточностью изготовления приборов и ошибкой отсчета. Эту погрешность будем называть аппаратурной.

    Случайные погрешности - это ошибки, причина которых заранее не может быть учтена. Случайные погрешности зависят от несовершенства наших органов чувств, от непрерывного действия изменяющихся внешних условий (изменение температуры, давления, влажности, вибрация воздуха и т.д.). Случайные погрешности являются неустранимыми, они неизбежно присутствуют во всех измерениях, но их можно оценить, применяя методы теории вероятностей.

    Обработка результатов прямых измерений

    Пусть в результате прямых измерений физической величины получен ряд ее значений:

    x 1 , x 2 , ... x n .

    Зная этот ряд чисел, нужно указать значение, наиболее близкое к истинному значению измеряемой величины, и найти величину случайной погрешности. Эту задачу решают на основе теории вероятностей, подробное изложение которой выходит за рамки нашего курса.

    Наиболее вероятным значением измеряемой физической величины (близким к истинному) считают среднее арифметическое

    . (1)

    Здесь x i – результат i–го измерения; n – число измерений. Случайная ошибка измерения может быть оценена величиной абсолютной погрешности D x, которую вычисляют по формуле

    , (2)

    где t(a ,n) – коэффициент Стьюдента, зависящий от числа измерений n и доверительной вероятности a . Значение доверительной вероятности a задает сам экспериментатор.

    Вероятностью случайного события называется отношение числа случаев, благоприятного для данного события, к общему числу равновозможных случаев. Вероятность достоверного события равна 1, а невозможного - 0.

    Значение коэффициента Стьюдента, соответствующее заданной доверительной вероятности a и определенному числу измерений n, находят по табл. 1.

    Таблица 1

    Число

    измерений n

    Доверительная вероятность a

    0,95

    0,98

    1,38

    12,7

    31,8

    1,06

    0,98

    0,94

    0,92

    0,90

    0,90

    0,90

    0,88

    0,84

    Из табл. 1 видно, что величина коэффициента Стьюдента и случайная погрешность измерения тем меньше, чем больше n и меньше a . Практически выбирают a =0,95. Однако простое увеличение числа измерений не может свести общую погрешность к нулю, так как любой измерительный прибор дает погрешность.

    Поясним смысл терминов абсолютная погрешность D x и доверительная вероятность a , используя числовую ось. Пусть среднее значение измеряемой величины (рис. 1), а вычисленная абсолютная погрешность D x. Отложим D x от справа и слева. Полученный числовой интервал от (- D x) до (+ D x) называется доверительным интервалом . Внутри этого доверительного интервала находится истинное значение измеряемой величины x.

    Рис.1

    Если измерения той же величины повторить теми же приборами в тех же условиях, то истинное значение измеряемой величины x ист попадет в этот же доверительный интервал, но попадание будет не достоверным, а с вероятностью a .

    Вычислив величину абсолютной погрешности D x по формуле (2), истинное значение x измеряемой физической величины можно записать в виде x= ±D x.

    Для оценки точности измерения физической величины подсчитывают относительную погрешность , которую обычно выражают в процентах,

    . (3)

    Таким образом, при обработке результатов прямых измерений необходимо проделать следующее:

    1. Провести измерения n раз.

    2. Вычислить среднее арифметическое значение по формуле (1).

    3. Задать доверительную вероятность a (обычно берут a =0.95).

    4. По таблице 1 найти коэффициент Стьюдента, соответствующий заданной доверительной вероятности a и числу измерений n.

    5. Вычислить абсолютную погрешность по формуле (2) и сравнить ее с аппаратурной. Для дальнейших вычислений взять ту из них, которая больше.

    6. По формуле (3) вычислить относительную ошибку e .

    7. Записать окончательный результат

    x= ±D x. с указанием относительной погрешности e и доверительной вероятности a .

    Обработка результатов косвенных измерений

    Пусть искомая физическая величина y связана с другими величинами x 1 , x 2 , ... x k некоторой функциональной зависимостью

    Y=f(x 1 , x 2 , ... x k) (4)

    Среди величин x 1 , x 2 , ... x k имеются величины, полученные при прямых измерениях, и табличные данные. Требуется определить абсолютную D y и относительную e погрешности величины y.

    В большинстве случаев проще сначала вычислить относительную погрешность, а затем – абсолютную. Из теории вероятностей относительная погрешность косвенного измерения

    . (5)

    Здесь , где - частная производная функции по переменной x i, при вычислении которой все величины, кроме x i , считаются постоянными; D x i – абсолютная погрешность величины x i . Если x i получена в результате прямых измерений, то ее среднее значение и абсолютную погрешность D x вычисляют по формулам (1) и (2). Для всех измеренных величин x i задается одинаковая доверительная вероятность a . Если какие-либо из слагаемых, возводимых в квадрат, в выражении (5) меньше на порядок (в 10 раз) других слагаемых, то ими можно пренебречь. Это нужно учитывать при выборе табличных величин (p , g и др.), входящих в формулу относительной погрешности. Их значение надо выбрать такими, чтобы их относительная погрешность была на порядок меньше наибольшей относительной погрешности.

    Запишем конечный результат:

    y= ±D y.

    Здесь – среднее значение косвенного измерения, полученное по формуле (4) при подстановке в нее средних величин x i ; D y= e .

    Обычно в реальных измерениях присутствуют и случайные и систематические (аппаратурные) погрешности. Если вычисленная случайная погрешность прямых измерений равна нулю или меньше аппаратурной в два и большее число раз, то при вычислении погрешности косвенных измерений в расчет должна приниматься аппаратурная погрешность. Если эти погрешности отличаются меньше, чем в два раза, то абсолютная погрешность вычисляется по формуле

    .

    Рассмотрим пример. Пусть необходимо вычислить объем цилиндра:

    . (6)

    Здесь D – диаметр цилиндра, H – его высота, измеренная штангенциркулем с ценой деления 0.1 мм. В результате многократных измерений найдем средние значения =10.0 мм и =40.0 мм. Относительную погрешность косвенного измерения объема цилиндра определяем по формуле

    , (7)

    где D D и D H – абсолютные ошибки прямых измерений диаметра и высоты. Их величины рассчитываем по формуле (2): D D=0.01 мм; D H=0.13 мм. Сравним вычисленные ошибки с аппаратурной, равной цене деления штангенциркуля. D D<0.1, поэтому в формуле (7) подставим вместо D D не 0.01 мм, а 0.1 мм.

    Значение p нужно выбрать таким, чтобы относительной ошибкой Dp / p в формуле (7) можно было пренебречь. Из анализа измеренных величин и вычисленных абсолютных ошибок D D и D H видно, что наибольший вклад в относительную ошибку измерения объема вносит ошибка измерения высоты. Вычисление относительной ошибки высоты дает e H =0.01. Следовательно, значение p нужно взять 3.14. В этом случае Dp / p » 0.001 (Dp =3.142-3.14=0.002).

    В абсолютной погрешности оставляют одну значащую цифру.

    Примечания.

    1. Если измерения производят один раз или результаты многократных измерений одинаковы, то за абсолютную погрешность измерений нужно взять аппаратурную погрешность, которая для большинства используемых приборов равна цене деления прибора (более подробно об аппаратурной погрешности см. в разделе “Измерительные приборы”).

    2. Если табличные или экспериментальные данные приводятся без указания погрешности, то абсолютную погрешность таких чисел принимают равной половине порядка последней значащей цифры.

    Действия с приближенными числами

    Вопрос о различной точности вычисления очень важен, так как завышение точности вычисления приводит к большому объему ненужной работы. Студенты часто вычисляют искомую величину с точностью до пяти и более значащих цифр. Следует понимать, что эта точность излишняя. Нет никакого смысла вести вычисления дальше того предела точности, который обеспечивается точностью определения непосредственно измерявшихся величин. Проведя обработку измерений, часто не подсчитывают ошибки отдельных результатов и судят об ошибке приближенного значения величины, указывая количество верных значащих цифр в этом числе.

    Значащими цифрами приближенного числа называются все цифры, кроме нуля, а также нуль в двух случаях:

    1) когда он стоит между значащими цифрами (например, в числе 1071 – четыре значащих цифры);

    2) когда он стоит в конце числа и когда известно, что единица соответствующего разряда в данном числе не имеется. Пример. В числе 5,20 три значащих цифры, и это означает, что при измерении мы учитывали не только единицы, но и десятые, и сотые, а в числе 5,2 – только две значащих цифры, и это значит, что мы учитывали только целые и десятые.

    Приближенные вычисления следует производить с соблюдением следующих правил.

    1. При сложении и вычитании в результате сохраняют столько десятичных знаков, сколько их содержится в числе с наименьшим количеством десятичных знаков. Например: 0,8934+3,24+1,188=5,3214 » 5,32. Сумму следует округлить до сотых долей, т.е. принять равной 5,32.

    2. При умножении и делении в результате сохраняют столько значащих цифр, сколько их имеет приближенное число с наименьшим количеством значащих цифр. Например, необходимо перемножить 8,632 ´ 2,8 ´ 3,53. Вместо этого выражения следует вычислять

    8,6 ´ 2,8 ´ 3,5 » 81.

    При вычислении промежуточных результатов сохраняют на одну цифру больше, чем рекомендуют правила (так называемая запасная цифра). В окончательном результате запасная цифра отбрасывается. Для уточнения значения последней значащей цифры результата нужно вычислить за ней цифру. Если она окажется меньше пяти, ее следует просто отбросить, а если пять или больше пяти, то, отбросив ее, следует предыдущую цифру увеличить на единицу. Обычно в абсолютной ошибке оставляют одну значащую цифру, а измеренную величину округляют до того разряда, в котором находится значащая цифра абсолютной ошибки.

    3. Результат расчета значений функций x n , , lg(x ) некоторого приближенного числа x должен содержать столько значащих цифр, сколько их имеется в числе x . Например: .

    Построение графиков

    Результаты, полученные в ходе выполнения лабораторной работы, часто важно и необходимо представить графической зависимостью. Для того, чтобы построить график, нужно на основании проделанных измерений составить таблицу, в которой каждому значению одной из величин соответствует определенное значение другой.

    Графики выполняют на миллиметровой бумаге. При построении графика значения независимой переменной следует откладывать на оси абсцисс, а значения функции – на оси ординат. Около каждой оси нужно написать обозначение изображаемой величины и указать, в каких единицах она измеряется (рис. 2).

    Рис.2

    Для правильного построения графика важным является выбор масштаба: кривая занимает весь лист, и размеры графика по длине и высоте получаются приблизительно одинаковыми. Масштаб должен быть простым. Проще всего, если единица измеренной величины (0,1;10;100 и т.д.) соответствует 1, 2 или 5 см. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями откладываемых величин (рис. 2).

    Каждое полученное экспериментальное значение наносится на график достаточно заметным образом: точкой, крестиком и т.д.

    Погрешности указывают для измеряемых величин в виде отрезков длиной в доверительный интервал, в центре которых расположены экспериментальные точки. Так как указание погрешностей загромождает график, то делается это лишь тогда, когда информация о погрешностях действительно нужна: при построении кривой по экспериментальным точкам, при определении ошибок с помощью графика, при сравнении экспериментальных данных с теоретической кривой (рисунок 2). Часто достаточно указать погрешность для одной или нескольких точек.

    Через экспериментальные точки необходимо проводить плавную кривую. Нередко экспериментальные точки соединяют простой ломаной линией. Тем самым как бы указывается, что величины каким-то скачкообразным образом зависят друг от друга. А это является маловероятным. Кривая должна быть плавной и может проходить не через отмеченные точки, а близко к ним так, чтобы эти точки находились по обе стороны кривой на одинаковом от нее расстоянии. Если какая-либо точка сильно выпадает из графика, то это измерение следует повторить. Поэтому желательно строить график непосредственно во время опыта. Тогда график может служить для контроля и улучшения наблюдений.

    ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И УЧЕТ ИХ ПОГРЕШНОСТЕЙ

    Для прямых измерений физических величин применяют измерительные приборы. Любые измерительные приборы не дают истинного значения измеряемой величины. Это связано, во-первых, с тем, что невозможно точно отсчитать по шкале прибора измеряемую величину, во-вторых, с неточностью изготовления измерительных приборов. Для учета первого фактора вводится погрешность отсчета Δx o , для второго - допускаемая погрешность Δx д . Сумма этих погрешностей образует аппаратурную или абсолютную погрешность прибора Δx :

    .

    Допускаемую погрешность нормируют государственными стандартами и указывают в паспорте или описании прибора.

    Погрешность отсчета обычно берут равной половине цены деления прибора, но для некоторых приборов (секундомер, барометр-анероид) - равной цене деления прибора (так как положение стрелки этих приборов изменяется скачками на одно деление) и даже нескольким делениям шкалы, если условия опыта не позволяют уверенно отсчитать до одного деления (например, при толстом указателе или плохом освещении). Таким образом, погрешность отсчета устанавливает сам экспериментатор, реально отражая условия конкретного опыта.

    Если допускаемая погрешность значительно меньше ошибки отсчета, то ее можно не учитывать. Обычно абсолютная погрешность прибора берется равной цене деления шкалы прибора.

    Измерительные линейки обычно имеют миллиметровые деления. Для измерения рекомендуется применять стальные или чертежные линейки со скосом. Допускаемая погрешность таких линеек составляет 0,1 мм и ее можно не учитывать, так как она значительно меньше погрешности отсчета, равной ± 0,5 мм. Допускаемая погрешность деревянных и пластмассовых линеек ± 1 мм.

    Допускаемая погрешность измерения микрометра зависит от верхнего предела измерения и может составлять ± (3–4) мкм (для микрометров с диапазоном измерения 0–25 мм). За погрешность отсчета принимают половину цены деления. Таким образом, абсолютную погрешность микрометра можно брать равно цене деления, т.е. 0,01 мм.

    При взвешивании допускаемая погрешность технических весов зависит от нагрузки и составляет при нагрузке от 20 до 200 г – 50 мг, при нагрузке меньше 20 г – 25 мг.

    Погрешность цифровых приборов определяется по классу точности.

    Для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Предположим, что мы измеряем некоторую величину x. В результате проведенных измерений мы получили значений величины:

    x1, x2, x3, ... xn. (2)

    Этот ряд значений величины x получил название выборки. Имея такую выборку, мы можем дать оценку результата измерений. Величину, которая будет являться такой оценкой, мы обозначим. Но так как это значение оценки результатов измерений не будет представлять собой истинного значения измеряемой величины, необходимо оценить его ошибку. Предположим, что мы сумеем определить оценку ошибки Дx . В таком случае мы можем записать результат измерений в виде

    Так как оценочные значения результата измерений и ошибки Дx не являются точными, запись (3) результата измерений должна сопровождаться указанием его надежности P. Под надежностью или доверительной вероятностью понимают вероятность того, что истинное значение измеряемой величины заключено в интервале, указанном записью (3). Сам этот интервал называется доверительным интервалом.

    Например, измеряя длину некоторого отрезка, окончательный результат мы записали в виде

    l = (8.34 ± 0.02) мм, (P = 0.95)

    Это означает, что из 100 шансов - 95 за то, что истинное значение длины отрезка заключается в интервале от 8.32 до 8.36 мм.

    Таким образом, задача заключается в том, чтобы, имея выборку (2), найти оценку результата измерений, его ошибку Дx и надежность P.

    Эта задача может быть решена с помощью теории вероятностей и математической статистики.

    В большинстве случаев случайные ошибки подчиняются нормальному закону распределения, установленного Гауссом. Нормальный закон распределения ошибок выражается формулой

    где Дx - отклонение от величины истинного значения;

    у - истинная среднеквадратичная ошибка;

    у 2- дисперсия, величина которой характеризует разброс случайных величин.

    Как видно из (4) функция имеет максимальное значение при x = 0 , кроме того, она является четной.

    На рис.16 показан график этой функции. Смысл функции (4) заключается в том, что площадь фигуры, заключенной между кривой, осью Дx и двумя ординатами из точек Дx1 и Дx2 (заштрихованная площадь на рис.16) численно равна вероятности, с которой любой отсчет попадет в интервал (Дx1,Дx2) .

    Поскольку кривая распределена симметрично относительно оси ординат, можно утверждать, что равные по величине, но противоположные по знаку ошибки равновероятны. А это дает возможность в качестве оценки результатов измерений взять среднее значение всех элементов выборки (2)

    где - n число измерений.

    Итак, если в одних и тех же условиях проделано n измерений, то наиболее вероятным значением измеряемой величины будет ее среднее значение (арифметическое). Величина стремится к истинному значению м измеряемой величины при n > ?.

    Средней квадратичной ошибкой отдельного результата измерения называется величина (6)

    Она характеризует ошибку каждого отдельного измерения. При n > ? S стремится к постоянному пределу у

    С увеличением у увеличивается разброс отсчетов, т.е. становится ниже точность измерений.

    Среднеквадратичной ошибкой среднего арифметического называется величина(8)

    Это фундаментальный закон возрастания точности при росте числа измерений.

    Ошибка характеризует точность, с которой получено среднее значение измеренной величины Результат записывается в виде:

    Эта методика расчета ошибок дает хорошие результаты (с надежностью 0.68) только в том случае, когда одна и та же величина измерялась не менее 30 - 50 раз.

    В 1908 году Стьюдент показал, что статистических подход справедлив и при малом числе измерений. Распределение Стьюдента при числе измерений n > ? переходит в распределение Гаусса, а при малом числе отличается от него.

    Для расчета абсолютной ошибки при малом количестве измерений вводится специальный коэффициент, зависящий от надежности P и числа измерений n, называемый коэффициентом

    Стьюдента t.

    Опуская теоретические обоснования его введения, заметим, что

    Дx = · t. (10)

    где Дx - абсолютная ошибка для данной доверительной вероятности;

    среднеквадратичная ошибка среднего арифметического.

    Коэффициенты Стьюдента приведены в таблице.

    Из сказанного следует:

    Величина среднеквадратичной ошибки позволяет вычислить вероятность попадания истинного значения измеряемой величины в любой интервал вблизи среднего арифметического.

    При n > ? > 0, т.е. интервал, в котором с заданной вероятностью находится истинное значение м, стремится к нулю с увеличением числа измерений. Казалось бы, увеличивая n, можно получить результат с любой степенью точности. Однако точность существенно увеличивается лишь до тех пор, пока случайная ошибка не станет сравнимой с систематической. Дальнейшее увеличение числа измерений нецелесообразно, т.к. конечная точность результата будет зависеть только от систематической ошибки. Зная величину систематической ошибки, нетрудно задаться допустимой величиной случайной ошибки, взяв ее, например, равной 10% от систематической. Задавая для выбранного таким образом доверительного интервала определенное значение P (например, P = 0.95), нетрудно нейти необходимое число измерений, гарантирующее малое влияние случайной ошибки на точность результата.

    Для этого удобнее воспользоваться таблицей коэффициентов Стьюдента, в которой интервалы заданы в долях величины у, являющейся мерой точности данного опыта по отношению к случайным ошибкам.

    При обработке результатов прямых измерений предлагается следующий порядок операций:

    Результат каждого измерения запишите в таблицу.

    Вычислите среднее значение из n измерений

    Найдите погрешность отдельного измерения

    Вычислите квадраты погрешностей отдельных измерений

    (Дx 1)2, (Дx 2)2, ... , (Дx n)2.

    Определите среднеквадратичную ошибку среднего арифметического

    Задайте значение надежности (обычно берут P = 0.95).

    Определите коэффициент Стьюдента t для заданной надежности P и числа произведенных измерений n.

    Найдите доверительный интервал (погрешность измерения)

    Если величина погрешности результата измерения Дx окажется сравнимой с величиной погрешности прибора д, то в качестве границы доверительного интервала возьмите

    Если одна из ошибок меньше другой в три или более раз, то меньшую отбросьте.

    Окончательный результат запишите в виде