Большая энциклопедия нефти и газа. Верхняя треугольная матрица

В которой все элементы ниже главной диагонали равны нулю.

Нижнетреугольная матрица - квадратная матрица, в которой все элементы выше главной диагонали равны нулю.

Унитреугольная матрица (верхняя или нижняя) - треугольная матрица, в которой все элементы на главной диагонали равны единице.

Треугольные матрицы используются в первую очередь при решении линейных систем уравнений , когда матрица системы сводится к треугольному виду используя следующую теорему:

Решение систем линейных уравнений с треугольной матрицей (обратный ход) не представляет сложностей.

Свойства

  • Определитель треугольной матрицы равен произведению элементов на её главной диагонали.
  • Определитель унитреугольной матрицы равен единице.
  • Множество невырожденных верхнетреугольных матриц порядка n по умножению с элементами из поля k образует группу , которая обозначается UT (n , k ) или UT n (k ).
  • Множество невырожденных нижнетреугольных матриц порядка n по умножению с элементами из поля k образует группу, которая обозначается LT (n , k ) или LT n (k ).
  • Множество верхних унитреугольных матриц с элементами из поля k образует подгруппу UT n (k ) по умножению, которая обозначается SUT (n , k ) или SUT n (k ). Аналогичная подгруппа нижних унитреугольных матриц обозначается SLT (n , k ) или SLT n (k ).
  • Множество всех верхнетреугольных матриц с элементами из кольца k образует алгебру относительно операций сложения, умножения на элементы кольца и перемножения матриц. Аналогичное утверждение справедливо для нижнетреугольных матриц.
  • Группа UT n разрешима , а её унитреугольная подгруппа SUT n нильпотентна .

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Треугольная матрица" в других словарях:

    треугольная матрица - — треугольная матрица Квадратная матрица, у которой равны нулю все элементы, расположенные под или над главной диагональю (ср. Диагональная матрица). В первом случае имеем… …

    Треугольная матрица - квадратная матрица, у которой равны нулю все элементы, расположенные под или над главной диагональю (ср. Диагональная матрица). В первом случае имеем верхнюю Т.м. во втором нижнюю …

    Квадратная матрица, у к рой все элементы, расположенные ниже (или выше) главной диагонали, равны нулю. В первом случае матрица наз. верхней треугольной матрицей, во втором нижней треугольной матрицей. Определитель Т. м. равен произведению всех ее … Математическая энциклопедия

    Треугольная матрица МОБ - матрица коэффициентов межотраслевого баланса (МОБ), соответствующая такой производственной системе, в которой любой продукт может затрачиваться в своем собственном производстве и в производстве любого следующего… … Экономико-математический словарь

    треугольная матрица МОБ - Матрица коэффициентов межотраслевого баланса (МОБ), соответствующая такой производственной системе, в которой любой продукт может затрачиваться в своем собственном производстве и в производстве любого следующего за ним продукта, но никакой… … Справочник технического переводчика

    Треугольная матрица квадратная матрица, в которой все элементы ниже или выше главной диагонали равны нулю. Пример верхнетреугольной матрицы Верхнетреугольная матрица квадратная матрица, в которой все элементы ниже главной диагонали равны нулю.… … Википедия

    Блочно-треугольная матрица - – матрица, которую можно разбить на подматрицы таким образом, чтобы по одну сторону ее «главной диагонали«, составленной из подматриц, стояли нули. Примерами блочно треугольных матриц могут служить… … Экономико-математический словарь

    блочно-треугольная матрица - Матрица, которую можно разбить на подматрицы таким образом, чтобы по одну сторону ее «главной диагонали«, составленной из подматриц, стояли нули. Примерами блочно треугольных матриц могут служить треугольная матрица и блочно диагональная матрица … Справочник технического переводчика

    Матрица - система элементов (чисел, функций и других величин), расположенных в виде прямоугольной таблицы, над которой можно производить определенные действия. Таблица имеет следующий вид: Элемент матрицы в общем виде обозначается aij это… … Экономико-математический словарь

    матрица - Логическая сеть, сконфигурированная в виде прямоугольного массива пересечений входных/выходных каналов. матрица Система элементов (чисел, функций и других величин), расположенных в виде прямоугольной… … Справочник технического переводчика

В данной теме рассмотрим понятие матрицы, а также виды матриц. Так как в данной теме немало терминов, то я добавлю краткое содержание, чтобы ориентироваться в материале было проще.

Определение матрицы и её элемента. Обозначения.

Матрица - это таблица из $m$ строк и $n$ столбцов. Элементами матрицы могут быть объекты совершенно разнообразной природы: числа, переменные или, к примеру, иные матрицы. Например, матрица $\left(\begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right)$ содержит 3 строки и 2 столбца; элементами её являются целые числа. Матрица $\left(\begin{array} {cccc} a & a^9+2 & 9 & \sin x \\ -9 & 3t^2-4 & u-t & 8\end{array} \right)$ содержит 2 строки и 4 столбца.

Разные способы записи матриц: показать\скрыть

Матрица может быть записана не только в круглых, но и в квадратных или двойных прямых скобках. Т.е., указанные ниже записи означают одну и ту же матрицу:

$$ \left(\begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right);\;\; \left[ \begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right]; \;\; \left \Vert \begin{array} {cc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right \Vert $$

Произведение $m\times n$ называют размером матрицы . Например, если матрица содержит 5 строк и 3 столбца, то говорят о матрице размера $5\times 3$. Матрица $\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ имеет размер $3 \times 2$.

Обычно матрицы обозначаются большими буквами латинского алфавита: $A$, $B$, $C$ и так далее. Например, $B=\left(\begin{array} {ccc} 5 & 3 \\ 0 & -87 \\ 8 & 0 \end{array} \right)$. Нумерация строк идёт сверху вниз; столбцов - слева направо. Например, первая строка матрицы $B$ содержит элементы 5 и 3, а второй столбец содержит элементы 3, -87, 0.

Элементы матриц обычно обозначаются маленькими буквами. Например, элементы матрицы $A$ обозначаются $a_{ij}$. Двойной индекс $ij$ содержит информацию о положении элемента в матрице. Число $i$ - это номер строки, а число $j$ - номер столбца, на пересечении которых находится элемент $a_{ij}$. Например, на пересечении второй строки и пятого столбца матрицы $A=\left(\begin{array} {cccccc} 51 & 37 & -9 & 0 & 9 & 97 \\ 1 & 2 & 3 & 41 & 59 & 6 \\ -17 & -15 & -13 & -11 & -8 & -5 \\ 52 & 31 & -4 & -1 & 17 & 90 \end{array} \right)$ расположен элемент $a_{25}=59$:

Точно так же на пересечении первой строки и первого столбца имеем элемент $a_{11}=51$; на пересечении третьей строки и второго столбца - элемент $a_{32}=-15$ и так далее. Замечу, что запись $a_{32}$ читается как "а три два", но не "а тридцать два".

Для сокращённого обозначения матрицы $A$, размер которой равен $m\times n$, используется запись $A_{m\times n}$. Можно записать и несколько более развёрнуто:

$$ A_{m\times n}=(a_{ij}) $$

где запись $(a_{ij})$ означает обозначение элементов матрицы $A$. В полностью развёрнутом виде матрицу $A_{m\times n}=(a_{ij})$ можно записать так:

$$ A_{m\times n}=\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m1} & a_{m2} & \ldots & a_{mn} \end{array} \right) $$

Введём еще один термин - равные матрицы .

Две матрицы одинакового размера $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называются равными , если их соответствующие элементы равны, т.е. $a_{ij}=b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Пояснение к записи $i=\overline{1,m}$: показать\скрыть

Запись "$i=\overline{1,m}$" означает, что параметр $i$ изменяется от 1 до m. Например, запись $i=\overline{1,5}$ говорит о том, что параметр $i$ принимает значения 1, 2, 3, 4, 5.

Итак, для равенства матриц требуется выполнение двух условий: совпадение размеров и равенство соответствующих элементов. Например, матрица $A=\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ не равна матрице $B=\left(\begin{array}{cc} 8 & -9\\0 & -87 \end{array}\right)$, поскольку матрица $A$ имеет размер $3\times 2$, а размер матрицы $B$ составляет $2\times 2$. Также матрица $A$ не равна матрице $C=\left(\begin{array}{cc} 5 & 3\\98 & -87\\8 & 0\end{array}\right)$, поскольку $a_{21}\neq c_{21}$ (т.е. $0\neq 98$). А вот для матрицы $F=\left(\begin{array}{cc} 5 & 3\\0 & -87\\8 & 0\end{array}\right)$ можно смело записать $A=F$ поскольку и размеры, и соответствующие элементы матриц $A$ и $F$ совпадают.

Пример №1

Определить размер матрицы $A=\left(\begin{array} {ccc} -1 & -2 & 1 \\ 5 & 9 & -8 \\ -6 & 8 & 23 \\ 11 & -12 & -5 \\ 4 & 0 & -10 \\ \end{array} \right)$. Указать, чему равны элементы $a_{12}$, $a_{33}$, $a_{43}$.

Данная матрица содержит 5 строк и 3 столбца, поэтому размер её $5\times 3$. Для этой матрицы можно использовать также обозначение $A_{5\times 3}$.

Элемент $a_{12}$ находится на пересечении первой строки и второго столбца, поэтому $a_{12}=-2$. Элемент $a_{33}$ находится на пересечении третьей строки и третьего столбца, поэтому $a_{33}=23$. Элемент $a_{43}$ находится на пересечении четвертой строки и третьего столбца, поэтому $a_{43}=-5$.

Ответ : $a_{12}=-2$, $a_{33}=23$, $a_{43}=-5$.

Виды матриц в зависимости от их размера. Главная и побочная диагонали. След матрицы.

Пусть задана некая матрица $A_{m\times n}$. Если $m=1$ (матрица состоит из одной строки), то заданную матрицу называют матрица-строка . Если же $n=1$ (матрица состоит из одного столбца), то такую матрицу называют матрица-столбец . Например, $\left(\begin{array} {ccccc} -1 & -2 & 0 & -9 & 8 \end{array} \right)$ - матрица-строка, а $\left(\begin{array} {c} -1 \\ 5 \\ 6 \end{array} \right)$ - матрица-столбец.

Если для матрицы $A_{m\times n}$ верно условие $m\neq n$ (т.е. количество строк не равно количеству столбцов), то часто говорят, что $A$ - прямоугольная матрица. Например, матрица $\left(\begin{array} {cccc} -1 & -2 & 0 & 9 \\ 5 & 9 & 5 & 1 \end{array} \right)$ имеет размер $2\times 4$, т.е. содержит 2 строки и 4 столбца. Так как количество строк не равно количеству столбцов, то эта матрица является прямоугольной.

Если для матрицы $A_{m\times n}$ верно условие $m=n$ (т.е. количество строк равно количеству столбцов), то говорят, что $A$ - квадратная матрица порядка $n$. Например, $\left(\begin{array} {cc} -1 & -2 \\ 5 & 9 \end{array} \right)$ - квадратная матрица второго порядка; $\left(\begin{array} {ccc} -1 & -2 & 9 \\ 5 & 9 & 8 \\ 1 & 0 & 4 \end{array} \right)$ - квадратная матрица третьего порядка. В общем виде квадратную матрицу $A_{n\times n}$ можно записать так:

$$ A_{n\times n}=\left(\begin{array}{cccc} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{array} \right) $$

Говорят, что элементы $a_{11}$, $a_{22}$, $\ldots$, $a_{nn}$ находятся на главной диагонали матрицы $A_{n\times n}$. Эти элементы называются главными диагональными элементами (или просто диагональными элементами). Элементы $a_{1n}$, $a_{2 \; n-1}$, $\ldots$, $a_{n1}$ находятся на побочной (второстепенной) диагонали ; их называют побочными диагональными элементами . Например, для матрицы $C=\left(\begin{array}{cccc}2&-2&9&1\\5&9&8& 0\\1& 0 & 4 & -7 \\ -4 & -9 & 5 & 6\end{array}\right)$ имеем:

Элементы $c_{11}=2$, $c_{22}=9$, $c_{33}=4$, $c_{44}=6$ являются главными диагональными элементами; элементы $c_{14}=1$, $c_{23}=8$, $c_{32}=0$, $c_{41}=-4$ - побочные диагональные элементы.

Сумма главных диагональных элементов называется следом матрицы и обозначается $\Tr A$ (или $\Sp A$):

$$ \Tr A=a_{11}+a_{22}+\ldots+a_{nn} $$

Например, для матрицы $C=\left(\begin{array} {cccc} 2 & -2 & 9 & 1\\5 & 9 & 8 & 0\\1 & 0 & 4 & -7\\-4 & -9 & 5 & 6 \end{array}\right)$ имеем:

$$ \Tr C=2+9+4+6=21. $$

Понятие диагональных элементов используется также и для неквадратных матриц. Например, для матрицы $B=\left(\begin{array} {ccccc} 2 & -2 & 9 & 1 & 7 \\ 5 & -9 & 8 & 0 & -6 \\ 1 & 0 & 4 & -7 & -6 \end{array} \right)$ главными диагональными элементами будут $b_{11}=2$, $b_{22}=-9$, $b_{33}=4$.

Виды матриц в зависимости от значений их элементов.

Если все элементы матрицы $A_{m\times n}$ равны нулю, то такая матрица называется нулевой и обозначается обычно буквой $O$. Например, $\left(\begin{array} {cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right)$, $\left(\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$ - нулевые матрицы.

Пусть матрица $A_{m\times n}$ имеет такой вид:

Тогда данную матрицу называют трапециевидной . Она может и не содержать нулевых строк, но уж если они есть, то располагаются в низу матрицы. В более общем виде трапециевидную матрицу можно записать так:

Повторюсь, наличие нулевых строк в конце не является обязательным. Т.е. формально можно выделить такие условия для трапециевидной матрицы:

  1. Все элементы, расположенные ниже главной диагонали, равны нулю.
  2. Все элементы от $a_{11}$ до $a_{rr}$, лежащие на главной диагонали, не равны нулю: $a_{11}\neq 0, \; a_{22}\neq 0, \ldots, a_{rr}\neq 0$.
  3. Либо все элементы последних $m-r$ строк равны нулю, либо $m=r$ (т.е. нулевых строк нету вообще).

Примеры трапециевидных матриц:

Перейдём к следующему определению. Матрицу $A_{m\times n}$ называют ступенчатой , если она удовлетворяет таким условиям:


Например, ступенчатыми матрицами будут:

Для сравнения, матрица $\left(\begin{array} {cccc} 2 & -2 & 0 & 1\\0 & 0 & 8 & 7\\0 & 0 & 4 & -7\\0 & 0 & 0 & 0 \end{array}\right)$ не является ступенчатой, поскольку у третьей строки нулевая часть такая же, как и у второй строки. Т.е., нарушается принцип "чем ниже строка - тем больше нулевая часть". Добавлю, что трапециевидная матрица есть частный случай ступенчатой матрицы.

Перейдём к следующему определению. Если все элементы квадратной матрицы, расположенные под главной диагональю, равны нулю, то такую матрицу называют верхней треугольной матрицей . Например, $\left(\begin{array} {cccc} 2 & -2 & 9 & 1 \\ 0 & 9 & 8 & 0 \\ 0 & 0 & 4 & -7 \\ 0 & 0 & 0 & 6 \end{array} \right)$ - верхняя треугольная матрица. Заметьте, что в определении верхней треугольной матрицы ничего не сказано про значения элементов, расположенных над главной диагональю или на главной диагонали. Они могут быть нулевыми или нет, - это несущественно. Например, $\left(\begin{array} {ccc} 0 & 0 & 9 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)$ - тоже верхняя треугольная матрица.

Если все элементы квадратной матрицы, расположенные над главной диагональю, равны нулю, то такую матрицу называют нижней треугольной матрицей . Например, $\left(\begin{array} {cccc} 3 & 0 & 0 & 0 \\ -5 & 1 & 0 & 0 \\ 8 & 2 & 1 & 0 \\ 5 & 4 & 0 & 6 \end{array} \right)$ - нижняя треугольная матрица. Заметьте, что в определении нижней треугольной матрицы ничего не сказано про значения элементов, расположенных под или на главной диагонали. Они могут быть нулевыми или нет, - это неважно. Например, $\left(\begin{array} {ccc} -5 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 9 \end{array} \right)$ и $\left(\begin{array} {ccc} 0 & 0 & 0 \\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array} \right)$ - тоже нижние треугольные матрицы.

Квадратная матрица называется диагональной , если все элементы этой матрицы, не лежащие на главной диагонали, равны нулю. Пример: $\left(\begin{array} {cccc} 3 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 \end{array} \right)$. Элементы на главной диагонали могут быть любыми (равными нулю или нет), - это несущественно.

Диагональная матрица называется единичной , если все элементы этой матрицы, расположенные на главной диагонали, равны 1. Например, $\left(\begin{array} {cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$ - единичная матрица четвёртого порядка; $\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array}\right)$ - единичная матрица второго порядка.

1. Пусть дана матрица ранга . Введем следующие обозначения для последовательных главных миноров этой матрицы:

.

Допустим, что имеют место условия выполнимости алгоритма Гаусса:

Обозначим через матрицу коэффициентов системы уравнений (18), к которой приводится система уравнений

методом исключения Гаусса. Матрица имеет верхнюю треугольную форму, причем элементы ее первыхrг строк определяются формулами (13), а элементы последних строк все равны нулю:

.

Переход от матрицы к матрице совершался при помощи некоторого числа операций следующего типа: к -й строке матрицы прибавлялась -я () строка, предварительно помноженная на некоторое число . Такая операция равносильна умножению преобразуемой матрицы слева на матрицу

. (31)

В этой матрице на главной диагонали стоят единицы, а все остальные элементы, за исключением элемента , равны нулю.

Таким образом

,

где каждая из матриц имеет вид (31) и, следовательно, является нижней треугольной матрицей с диагональными элементами, равными 1.

. (32)

Матрицу будем называть преобразующей матрицей для матрицы в методе исключения Гаусса. Обе матрицы, и , однозначно определяются заданием матрицы . Из (32) следует, что - нижняя треугольная матрица с диагональными элементами, равными 1 (см. стр. 28).

Поскольку - неособенная матрица, то из (33) находим:

Мы представили матрицу в виде произведения нижней треугольной матрицы на верхнюю треугольную матрицу . Вопрос о разложении матрицы на множители такого типа полностью выясняется следующей теоремой:

Теорема 1. Всякую матрицу ранга , у которой первые последовательных глазных миноров отличны от нуля,

, (34)

можно представить в виде произведения нижней треугольной матрицы на верхнюю треугольную матрицу

. (35)

Первым диагональным элементам матриц и можно дать произвольные значения, удовлетворяющие условиям (36).

Задание первых диагональных элементов матриц и определяет однозначно элементы первых столбцов матрицы и первых r строк матрицы . Для этих элементов имеют место формулы

, (37)

В случае в последних столбцах матрицы можно все элементы положить разными нулю, а в последних строках матрицы всем элементам дать произвольные значения, либо наоборот, последние строк матрицы заполнить нулями, а последние столбцов матрицы взять произвольными.

Доказательство. Возможность представления матрицы, удовлетворяющей условию (34), в виде произведения (35) была доказана выше [см. (33")]

Пусть теперь и - произвольные нижняя и верхняя треугольные матрицы, произведение которых равно . Пользуясь формулой для миноров произведения двух матриц, найдем:

Поскольку - верхняя треугольная матрица, то первые столбцов матрицы содержат только один отличный от нуля минор -го порядка . Поэтому равенство (38) может быть записано так:

Положим сначала здесь . Тогда получим:

откуда уже вытекают соотношения (36).

Не нарушая неравенства (35), мы можем в нем умножить матрицу справа на произвольную особенную диагональную матрицу , одновременно умножая матрицу слева на . Это равносильно умножению столбцов матрицы соответственно на и строк матрицы на . Поэтому диагональным элементам , , можно придать любые значения удовлетворяющие условиям (36).

,

т. е. первые формулы (37). Совершенно аналогично устанавливаются вторые формулы (37) для элементов матрицы .

Обратим внимание на то, что при перемножении матриц и элементы последних столбцов матрицы и элементы последних строк матрицы перемножаются между собой. Мы видели, что все элементы последних строк матрицы можно выбрать равными нулю. Тогда элементы последних столбцов матрицы можно выбрать произвольными. Ясно, что произведение матриц и не изменится, если мы последние столбцов матрицы возьмем нулевыми, а элементы последних строк матрицы произвольными.

Теорема доказана.

Из доказанной теоремы вытекает ряд интересных следствий.

Следствие 1. Элементы первых столбцов матрицы и первых строк матрицы связаны с элементами матрицы рекуррентными соотношениями:

(41)

Соотношения (41) непосредственно следуют из матричного равенства (35) ими удобно пользоваться для фактического вычисления элементов матриц и .

Следствие 2. Если - неособенная матрица , удовлетворяющая условию (34), то в представлении (35) матрицы и определяются однозначно, как только диагональные элементы этих матриц выбраны в соответствии с условиями (36).

Следствие 3. Если - симметрическая матрица ранга и

,

где - нижняя треугольная матрица, в которой

2. Пусть в представлении (35) у матрицы элементы последних столбцов равны нулю. Тогда можно положить:

, , (43)

где - нижняя, а - верхняя треугольная матрица; при этом первые диагональных элементов у матриц и равны 1, а элементы последних столбцов матрицы и последних строк матрицы выбраны совершенно произвольно. Подставляя в (35) выражения (43) для и и используя равенства (36), придем к следующей теореме:

Теорема 2. Всякая матрица ранга , у которой

,

Представим в виде произведения нижней треугольной матрицы , диагональной и верхней треугольной :

(44)

, (45)

а , произвольны при ; .

3. Метод исключения Гаусса, будучи применен к матрице ранга , для которой , дает нам две матрицы: нижнюю треугольную матрицу с диагональными элементами 1 и верхнюю треугольную матрицу , у которой первые диагональных элементов равны , а последние строк заполнены нулями. - гауссова форма матрицы , - преобразующая матрица.

Для конкретного вычисления элементов матрицы можно рекомендовать следующий прием.

Мы получим матрицу , если к единичной матрице применим все те преобразования (задаваемые матрицами ), которые мы в алгоритме Гаусса делали над матрицей (в этом случае вместо произведения , равного , мы будем иметь произведение , равное ). Поэтому к матрице приписываем справа единичную матрицу :

. (46)

Применяя к этой прямоугольной матрице все преобразования алгоритма Гаусса, получим прямоугольную матрицу, состоящую из двух квадратных матриц и :

Таким образом, применение алгоритма Гаусса к матрице (46) дает одновременно и матрицу и матрицу .

Если - неособенная матрица, т. е. , то и . В этом случае из (33) следует . Поскольку матрицы и определены при помощи алгоритма Гаусса, то нахождение обратной матрицы сводится к определению и умножению на ., т. е. столбцов матрицы, матрица совпадает с , а матрица - с матрицей , и потому формулы (53) и (54) принимают вид

Cтраница 2


Треугольной матрицей называется матрица, у которой все элементы по одну сторону от главной или побочной диагонали равны нулю. Чему равен определитель треугольной матрицы.  

Треугольной матрицей называется матрица, у которой все элементы, стоящие по одну сторону от главной или побочной диагонали, равны нулю. Чему равен определитель треугольной матрицы.  

Операции по выполнению прямого хода метода Гаусса в соответствии с теоремами линейной алгебры не изменяют величины определителя. Очевидно, что определитель треугольной матрицы равен произведению ее диагональных элементов.  

Это интуитивное представление находит в некоторых случаях точное количественное выражение. Например, мы знаем (см. (6) из § 1), что определитель треугольной матрицы (верхней или нижней) равен произведению элементов, стоящих на главной диагонали.  

Треугольные матрицы имеют много замечательных свойств, в силу которых они широко используются в построении самых различных методов решения задач алгебры. Так, например, для квадратных матриц сумма и произведение одноименных треугольных матриц есть треугольная матрица того же наименования, определитель треугольной матрицы равен произведению диагональных элементов, собственные значения треугольной матрицы совпадают с ее диагональными элементами, треугольная матрица легко обращается и обратная к ней также будет треугольной.  

Ранее уже отмечалось, что непосредственное нахождение определителя требует большого объема вычислений. Вместе с тем легко вычисляется определитель треугольной матрицы: он равен произведению ее диагональных элементов.  

Чем больше нулей среди элементов матрицы А и чем лучше они расположены, тем легче вычислять определитель det А. Это интуитивное представление находит в некоторых случаях точное количественное вьфажение. Например, мы знаем (см. (6) из § 1), что определитель треугольной матрицы (верхней или нижней) равен произведению элементов, стоящих на главной диагонали.  

Например, умножение определителя на скаляр эквивалентно умножению элементов любой строки или любого столбца матрицы на этот скаляр. Из уравнения (40) и из того, что разложение применимо к алгебраическому дополнению так же, как к определителю, следует, что определитель треугольной матрицы равен произведению ее диагональных элементов.  

Эта возможность вытекает из трех основных свойств определителей. Прибавление кратного одной строки к другой не меняет определителя. Перестановка двух строк изменяет знак определителя. Определитель треугольной матрицы равен попросту произведению ее диагональных элементов. DECOMP использует последнюю компоненту вектора ведущих элементов, чтобы поместить туда значение 1, если было произведено четное число перестановок, и значение - 1, если нечетное. Чтобы получить определитель, это значение нужно умножить на произведение диагональных элементов выходной матрицы.  

Треугольные матрицы и характеристическое уравнение

Квадратная матрица, у которой все элементы, расположенные ниже или выше главной диагонали, равны нулю, называется треугольной. Треугольная матрица может быть верхнего и нижнего строения. Верхняя и нижняя формы имеют соответственно вид:

, .

Треугольные матрицы обладают рядом важных в практическом отношении свойств:

1) Определитель треугольной матрицы равен произведению ее диагональных элементов:

Следовательно, треугольная матрица является неособенной только тогда, когда все элементы ее главной диагонали отличны от нуля.

2) Сумма и произведение треугольных матриц одинакового строения есть также треугольная матрица того же строения.

3) Неособенная треугольная матрица легко обращается, и ее обратная матрица снова имеет треугольную структуру того же строения.

4) Всякая неособенная матрица при помощи элементарных преобразований только над строками или только над столбцами может быть приведена к треугольной матрице. В качестве примера рассмотрим известную в теории устойчивости матрицу Гурвица

.

Для перехода к верхнему треугольному виду проделаем следующие элементарные преобразования. Из каждого элемента второй строки вычтем стоящий над ним элемент первой строки, предварительно умноженный на . Вместо строки с элементами получим строку с элементами где , , , ... и т. д.

Выполним аналогичные операции в остальных нижележащих строках. Затем вычтем из каждого элемента третьей строки преобразованной матрицы стоящие над ней элементы строки, умноженные на , и повторим аналогичные операции в остальных строках. Продолжим процесс по этой процедуре до тех пор, пока на m-м шаге не получим верхнюю треугольную матрицу

.

Такие преобразования по существу эквивалентны умножению матрицы справа (или слева) на некоторую другую вспомогательную матрицу.

Определитель матрицы Гурвица

.

Существует теорема о разложении любой квадратной матрицы в произведение двух треугольных. Согласно этой теореме, всякая квадратная матрица может быть представлена в виде произведения нижней и верхней треугольных матриц:

,

при условии, что ее диагональные миноры отличны от нуля:

, , .

Это разложение является единственным, если зафиксировать диагональные элементы одной из треугольных матриц (например, положить их равными единице). Разложение любой квадратной матрицы в произведение двух треугольных с предписанными диагональными элементами широко используется в вычислительных методах при решении задач с помощью ЭВМ.

Однозначное представление матрицы в виде произведения двух треугольных может быть обобщено на клеточные матрицы. В таких матрицах сами элементы являются матрицами. При этом матрица может быть разложена в произведение нижней и верхней квазитреугольных матриц.

Определитель квазитреугольной матрицы равен произведению ее диагональных клеток.

В отличие от диагональных матриц операция умножения треугольных матриц в общем случае не коммутативна.

В вычислительных методах теории управления существенную роль играют не только треугольные, но и так называемые почти треугольные матрицы. Многие методы используют разложение матрицы в виде произведения двух матриц, одна из которых имеет треугольное строение. Матрица А называется правой (левой) почти треугольной или матрицей Хессенберга, если для ее элементов а ij выполняются соотношения:

Например, матрица Хессенберга правой почти треугольной формы размерности (4x4) имеет вид

Отметим полезные особенности рассматриваемых матриц, которые используются в вычислительных методах:

а) сумма почти треугольных матриц одинакового строения будет треугольной матрицей того же строения, а произведение - нет;

б) построение характеристического полинома почти треугольных матриц экономично, так как требует гораздо меньшего объема вычислений, чем при произвольной форме матрицы. Число операций умножений составляет , сложений - ;

в) почти треугольная матрица может быть разложена в произведение двух треугольных, причем в разложении одна из матриц будет иметь более простую структуру, а именно, будет двухдиагональной.

В современных инженерных методах, заложенных в системы автоматизированного проектирования, широко используется мультипликативное представление матриц, например, QR-представление. Его сущность состоит в том, что любую квадратную матрицу А можно представить в виде произведения ортогональной и почти треугольной форм

Или , (4.4)

где Q - ортогональная матрица; R - правая (верхняя) треугольная форма; L - левая (нижняя) треугольная форма матрицы.

Представление (4.4) называется QR-разложением (в случае нижней треугольной матрицы QL-разложением) и для матрицы А является единственным.

QR- и QL-алгоритмы принципиально мало различаются. Их использование зависит от того, как расположены элементы матрицы. Если они сосредоточены в нижнем правом углу, эффективнее использовать QL-алгоритм. Если элементы матрицы сосредоточены в левой верхней части, то целесообразнее использовать QR-алгоритм. При правильной реализации на ЭВМ ошибки округления во многих случаях не оказывают большого влияния на точность вычисления.